Chapter 13
Data analysis

[image: image1.png]

Data analysis

Database technology, as illustrated in Chapter 9 and Chapter 10, was developed for supporting efficient and reliable on-line data management. Using On Line Transaction Processing (OLTP) technology, companies collect large amounts of data that enable their everyday operations. For example, banks collect data about their clients' transactions, and large supermarket chains collect data about their daily sales. This data could be useful to the companies not only on an operational level, but also for management, planning and decision support. Fur example, it could be possible to determine which of the financial products offered by a bank are the most successful, or observe the variations in sales of the various products in relation to the various promotions to evaluate their effectiveness. In practice, past and present data allows an analysis process essential for planning the future undertakings of the business.

For many decades, technological developments have neglected data analysis. It was thought that query languages were sufficient for both operational activity and for data analysis. Indeed, SQL allows the specification of complex queries, and thus offers some useful characteristics for data analysis (such as data aggregation). However, data analysis languages must be suitable for users who are not computer experts, and SQL is not sufficiently user-friendly for them. Moreover, it is extremely difficult to optimize data management so that it simultaneously satisfies the demands of analysis and operational applications; thus, the latter have generally prevailed over the former.

[image: image2.png]

[image: image3.png]Export
Data mining
Data access

Refresh

il

At the beginning of the nineties, parallel to the development of networks and data distribution products, a new architecture became popular, characterized by the separation of environments: alongside the traditional OLTP systems, other systems were developed, dedicated to On-line Analytical Processing (OLAP). This term states that data analysis happens on-line, that is, by means of interactive tools. The main element of OLAP architecture is the data warehouse, which carries out the same role as the database for OLTP architectures. New languages and paradigms were developed in order to facilitate data analysis by the OLAP clients. In this architecture, shown in Figure 13.1, OLTP systems carry out the role of data sources, providing data for the OLAP environment.
While the OLTP systems are normally shared by a high number of end users (mentioned in the first chapter), OLAP systems are characterized by the presence of few users (the 'analysts'), who perform strategic business functions and carry out decision support activates. In most cases, data analysis is carried by a group of specialists who perform studies commissioned by their directors, in direct contact with the business management of their company. Sometimes, data analysis tools are used by managers themselves. There is a need, therefore, to provide the OLAP tools with user-friendly interfaces, to allow immediate and efficient decision-making, without the need for intermediaries.

While OLTP systems describe the 'current state' of an application, the data present in the warehouse can be historic; in many cases, full histories are stored, to describe data changes over a period. The data import mechanisms are usually asynchronous and periodical, so as not to overload the 'data sources', especially in the case of OLTP systems with particularly critical performances. Misalignments between data at OLTP sources and the data warehouse are generally acceptable for many data analysis applications, since analysis can still be carried out if data is not fully up-to-date.

Another important problem in the management of a warehouse is that of data quality. Often, the simple gathering of data in the warehouse does not allow significant analysis, as the data often contains many inaccuracies, errors and omissions. Finally, data warehouses support data mining, that is, the search for hidden information in the data.

In this chapter, we will first describe the architecture of a data warehouse, illustrating how it is decomposed into modules. We will then deal with the structure of the data warehouse and the new operations introduced into the data warehouse to facilitate data analysis. We will conclude the chapter with a brief description of the main data mining problems and techniques.

13.1 Data warehouse architecture
[image: image4.png]

[image: image5.png]

As illustrated in Figure 13.2, a data warehouse (DW) contains data that is extracted from one or more systems, called data sources. These include a large range of systems, including relational and object-oriented DBMSs, but also pre-relational DBMSs or file-based data organizations (legacy systems). For the extraction of data from heterogeneous sources and legacy systems, the techniques discussed in Section 10.6 are used.

The architecture of a DW contains the following components, which do not necessary all have to be present. The first two components operate on the data source.

· The filter component checks data accuracy before its insertion into the warehouse. The filters can eliminate data that is clearly incorrect based on integrity constraints and rules relating to single data sources. They can also reveal, and sometimes correct, inconsistencies in the data extracted from multiple data sources. In this way, they perform data cleaning; this is essential to ensure a satisfactory level of data quality. It is important to proceed cautiously in the construction of warehouses, verifying data quality on small samples before carrying out a global loading.

· The export component is used for extracting data from the data sources. The process of extraction is normally incremental: the export component builds the collection of all the changes to the data source, which are next imported by the DW.

The next five components operate on the data warehouse.

· The loader is responsible for the initial loading of data into the DW. This component prepares the data for operational use, carrying out both ordering and aggregation operations and constructing the DW data structures. Typically, loader operations are carried out in batches when the DW is not used for analysis (for instance, at night). If the DW uses parallelism (illustrated in Section 10.7), this module also takes care of initial fragmentation of data. In some applications, characterized by a limited quantity of data, this module is invoked for loading the entire contents of the DW after each change to the data sources. More often, the DW data is incrementally updated by the refresh component, which is discussed next.

· The refresh component updates the contents of the DW by incrementally propagating to it the updates of the data sources. Changes in the data source are captured by means of two techniques: data shipping and transaction shipping. The first one uses triggers (see Chapter 12) installed in the data source, which, transparent to the applications, records deletions, insertions, and modifications in suitable variation files. Modifications are often treated as pairs of insertions and deletions. The second technique uses the transaction log (see Section 9.4.2) to construct the variation files. In both cases, the variation files are transmitted to the DW and then used to refresh the DW; old values are typically marked as historic data, but not deleted.
· The data access component is responsible for carrying out operations of data analysis. In the DW, this module efficiently computes complex relational queries, with joins, ordering, and complex aggregations. It also computes DW-specific new operations, such as roll up, drill down and data cube, which will be illustrated in Section 13.3. This module is paired with client systems that offer user-friendly interfaces, suitable for the data analysis specialist.

· The data mining component allows the execution of complex research on information 'hidden' within the data, using the techniques discussed in Section 13.5.

· The export component is used for exporting the data present in a warehouse to other DWs. thus creating a hierarchical architecture.
In addition, DWs are often provided with modules that support their design and management:

· A CASE environment for supporting DW design, similar to the tools illustrated in Chapter 7.
· The data dictionary, which describes the contents of the DW, useful for understanding which data analysis can be carried out. In practice, this component provides the users with a glossary, similar to the one described in Chapter 5.

We close this section about the DW architecture with some considerations regarding data quality. Data quality is an essential element for the success of a DW. If the stored data contains errors, the resulting analysis will necessarily produce erroneous results and the use of the DW could at this point be counter-productive. Unfortunately, various factors prejudice data quality.

When source data has no integrity constraints, for example because it is managed by pre-relational technology, the quantity of dirty data is very high. Typical estimates indicate that erroneous data in commercial applications fluctuates between 5 and 30 percent of the total.

To obtain high levels of quality we must use filters, expressing a large number of integrity rules and either correcting or eliminating the data that does not satisfy these rules. More generally, the quality of a data source is improved by carefully observing the data production process, and ensuring that verification and correction of the data is carried out during data production.

13.2 Schemas for data warehouses

The construction of a company DW, which describes all the data present in a company, is an ambitious aim often quite difficult to achieve. For this reason, the prevalent approach is to construct the DW by concentrating separately on simple subsets of company data (known as departmental data), for which the analytical aim is clear. Each simplified schema of departmental data takes the name data mart. Each data mart is organized according to a simple structure, called the multidimensional schema or, more simply, the star schema. The first term implies the presence of multiple dimensions of analysis; the second indicates the 'star' structure of the data mart schema once interpreted using the classic Entity-Relationship model.

13.2.1 Star schema

The star schema has a very simple structure, shown in Figure 13.3 using the Entity-Relationship model. A central entity represents the facts on which the analysis is focused. Various entities arranged in rays around it represent the dimensions of the analysis. Various one-to-many relationships connect each occurrence of fact to exactly one occurrence of each of the dimensions.

The schema in Figure 13.3 represents the management of a supermarket chain. The entity at the centre of the star represents the sales, that is, the fads of interest; the dimensions represent the products sold, the supermarkets, the promotions and the times of each sale.

The schema in Figure 13.4 represents the management of payments by an insurance company. The entity at the centre of the star represents payments relating to those claims that are honoured by the company; the dimensions represent the insurance policies, the clients, the times and the types of problems that cause the claim.

[image: image6.png]

[image: image7.png]

[image: image8.png]!

[image: image9.png]

The schema in Figure 13.5 represents the management of therapies in a group of hospitals. The entity at the centre of the star represents the therapies; dimensions represent the illnesses, the patients, the doctors in charge and the hospitals to which the patients are admitted.

As shown in the three data marts, the main characteristic of the star schema is the use of a regular structure, independent of the problem under consideration. Obviously, the number of dimensions can be different, but at least two dimensions are needed (because, otherwise, the model degenerates into a simple one-to-many hierarchy). A high number of dimensions is also inadvisable, because data analysis can then become too complex

13.2.2 Star schema for a supermarket chain

Let us look more closely at the data mart for the management of a supermarket chain, showing the relational schema corresponding to the E-R schema. By applying the translation techniques presented in Chapter 7, we translate one-to-many relationships by giving to the central entity an identifier composed of the set of the identifiers of each dimension. Thus, each tuple of the sale relation has four codes, ProdCode, MarkctCode, PromoCode and TimeCode, which, taken together, form a primary key We can thus better describe an elementary sale as the set of all the sales that are carried out in a unit of time, relating to a product, acquired with a promotion and in a particular supermarket. Each occurrence of sale is thus in its turn an item of aggregated data. The non-key attributes are the quantity sold (Qty) and the amount of revenues (Revenue). We assume that each sale is for one and one only promotion and we deal with the sales of products having no promotions by relating it to a 'dummy' occurrence of promotion. Let us now look at the attributes for the four dimensions.

· The products are identified by the code (ProdCode) and have as attributes Name, Category, Subcategory, Brand, Weight, and Supplier.

· The supermarkets are identified by the code (MarketCode) and have as attributes Name, City, Region, Zone, Size and Layout of the supermarket (e.g.. on one floor or on two floors, and so on).

· The promotions are identified by the code (PromoCode) and have as attributes Name, Type, discount Percentage, FlagCoupon. (which indicates the presence of coupons in newspapers). StartDate and EndDate of the promotions. Cost and advertising Agency.

· Time is identified by the code (TimeCode) and has attributes that describe the day of sale within the week (DayWk, Sunday to Saturday), of the month (DayMonth: 1 to 31) and the year (DayYear: 1 to 365), then the week within the month (WeekMonth) and the year (WeekYear), then the month within the year (MonthYear), the Season, the PreholidayFlag, which indicates whether the sale happens on a day before a holiday and finally the HolidayFlag which indicates whether the sale happens during a holiday.

Dimensions, in general, present redundancies (due to the lack of normalization, see Chapter 8) and derived data. For example, in the time dimension, from the day of the year and a calendar we can derive the values of all the other time-related attributes. Similarly, if a city appears several times in the SUPERMARKET relation, its region and zone are repeated. Redundancy is introduced to facilitate as much as possible the data analysis operations and to make them more efficient; for example, to allow the selection of all the sales that happen in April or on a Monday before a holiday.

The E-R schema is translated, using the techniques discussed in Chapter 7, into a logical relational schema, arranged as follows:

SALE(ProdCode, MarketCode, PromoCode, TimeCode, Qty, Revenue)
PRODUCT(ProdCode, Name, Category, SubCategory, Brand, Weight, Supplier)
MARKET(MarketCode, Name, City, Region, Zone, Size, Layout)
PROMOTION(PromoCode, Name, Type, Percentage, FlagCoupon, StartDate, EndDate, Cost, Agency)
TlME(TimeCode, DayWeek, DayMonth, Day Year, WeekMonth, WeekYear, Month Year, Season, PreholidayFlag, HolidayFlag)
The fact relation is in Boyce-Codd normal form (see Chapter 8), in that each attribute that is not a key depends functionally on the sole key of the relation. On the other hand, as we have discussed above, dimensions are generally non-normalized relations. Finally, there are four referential integrity constraints between each of the attributes that make up the key of the fact table and the dimension tables. Each of the four codes that make up the key of the fact table is an external key, referencing to the dimension table which has it as primary key.

13.2.3 Snowflake schema

The snowflake schema is an evolution of the simple star schema in which the dimensions are structured hierarchically. The schema is introduced to take into account the presence of non-normalized dimensions. Figure 13.6 illustrates the data mart for the management of supermarkets, represented by the snowflake schema. While the dimensions of the promotions are unchanged, the other dimensions are organized hierarchically:

· The dimensions of supermarkets are structured according to the hierarchy ZONE. REGION, CITY, SUPERMARKET. Each zone includes many regions, each region includes many cities, and each city has one or more supermarkets.

· The PRODUCT dimension is represented by a hierarchy with two new entities, the SUPPLIER and the CATEGORY of the product.

· The time dimension is structured according to the hierarchy DAY, MONTH, and YEAR.
Attributes of the star schema are distributed to the various entities of the snowflake schema, thus eliminating (or reducing) the sources of redundancy.

All the relationships described in Figure 13.6 are one-to-many, as each occurrence is connected to one and one only occurrence of the levels immediately above it.

The main advantage of the star schema is its simplicity, which, as we will see in the next section, allows the creation of only very simple interfaces for the formulation of queries. The snowflake schema represents the hierarchies explicitly, thus reducing redundancies and anomalies, but it is slightly more complex. However, easy-to-use interfaces are also available with this schema in order to support the preparation of queries. Below, we will assume the use of the star schema, leaving the reader to deal with the generalization in the case of the snowflake schema.
13.3 Operations for data analysis

We now illustrate the interfaces for the formulation of queries and introduce some operations to increase the expressive power of query languages.

13.3.1 Query formulation interfaces

Conducting data analysis for a given data mart, organized according to the star schema, requires first the extraction of a subset of facts and dimensions based on the needs of the particular data analysis activity. These data extractions follow a standard paradigm: dimensions are used to select the data and to group it while aggregate functions are usually applied to facts. It is thus possible to construct predefined modules for data retrieval from the DW, in which predefined choices are offered for the selection, aggregation and evaluation of aggregate functions.

Figure 13.7 shows a data retrieval interface for the data mart in Section 13.2.2. As regards the dimensions, three attributes are preselected: the name of the promotion, the name of the product, and the month of sale. For each fact, the quantities of sales are selected. The value 'Supersaver' is inserted into the lower part of the module. Supersaver identifies this particular promotion, thus indicating the interest in the sales obtained through it. Similarly, the value intervals 'pasta' and 'oil' (for products) and 'February' to April' are selected. The last row of the data extraction interface defines the structure of the result which should include the dimensions PRODUCT (Including the selected values 'pasta' and 'oil') and TIME (ranging between 'February' and 'April') and the total quantity of sales.

This interface corresponds to an SQL query with a predefined structure, which is completed by the choices introduced by the user. In the query there are join clauses (which connect the table of facts to the dimensions), selection clauses (which extract the relevant data), grouping, ordering, and aggregation clauses:

select D1.C1, ... Dn.Cn, Aggr1(F,Cl), Aggrn(F,Cn)
from Fact as F, Dimension1 as D1,... DimensionN as Dn
where join-condition (F, D1)

and...

and join-condition (F, Dn)

and selection-condition
 group by D1.C1, ... Dn.Cn
|order by D1.C1, ... Dn.Cn

In the specific case, the query constructed according to the user choices is as follows:

select Time.Month, Product.Name, sum(Qty)
from Sale, Time, Product, Promotion
where Sale.TimeCode = Time.TimeCode

and Sale.ProductCode = Product.ProductCode

and Sale.PromoCode = Promotion.PromoCode

and (Product. Name = ' Pasta' or Product.Name = 'Oil')

and Time.Month between 'Feb' and 'Apr'

and Promotion.Name = 'SuperSaver'
group by Time.Month, Product.Name
order by Time.Month, Product.Name

The query result can be presented on the OLAP client in matrix or in graph form. In matrix form, dimensions correspond to the rows and columns, and facts correspond to the cells, as in a spreadsheet (Figure 13 8).
This data representation is quite widely used by the analysis tools, as it enables spreadsheet operations upon the query results. Classical bar graphs or pie charts can be used to visualize data; for example, bar graphs may use different colours to represent different types of product at different times. In the following, we will keep a relational representation, and we will concentrate only on the total quantity of pasta sold (Figure 13.9).

13.3.2 Drill-down and roll-up

The spreadsheet analogy is not limited to the presentation of data. In fact, we have two additional data manipulation primitives that originate from two typical spreadsheet operations: drill-down and roll- up.
Drill-down allows the addition of a dimension of analysis, thus dis​aggregating the data. For example, a user could be interested in adding the distribution of the quantity sold in the sales zones, carrying out the drill-down operation on Zone. Supposing that the attribute Zone assumes the values 'North', 'Centre' and 'South', we obtain the table shown in Figure 13.17.

Roll-up allows instead the elimination of an analysis dimension, re-aggregating the data. For example, a user might decide that sub-dividing by zone is more useful than sub-dividing by monthly sales. This result is obtained by carrying out the roll-up operation on Month, obtaining the result shown in Figure 13 18.

By alternating roll-up and drill-down operations, the analyst can better highlight the dimensions that have greater influence over the phenomena represented by the facts. Note that the roll-up operation can be carried out by operating on the results of the query, while the drill-down operation requires in general a reformulation and re-evaluation of the query, as it requires the addition of columns to the query result.

13.3.3 Data cube

The recurring use of aggregations suggested the introduction of a very powerful operator, known as the data cube, to carry out all the possible aggregations present in a table extracted for analysis. We will describe the operator using an example. Let us suppose that the DW contains the following table, which describes car sales. We will show the sole tuples relating to the red Ferraris or red Porsches sold between 1998 and 1999 (Figure 13.12).

The data cube is constructed by adding the clause with cube to a query that contains a group by clause. For example, consider the following query:

select Make, Year, Colour, sum(Sales)
from Sales
where (Make = 'Ferrari' or Make = 'Porsche')

and Colour = 'Red'

and Year between 1998 and 1999
group by Make, Year, Colour
with cube

This query extracts all the aggregates constructed by grouping in a combined way the tuples according to the three dimensions of analysis (Make, Year and Colour). The aggregation is represented by the polymorphic value ALL, which (like null) is present in all the domains and corresponds to all the possible values present in the domain (Figure 13-13).

A spatial representation of the data cube structure is shown in Figure 13.14. The diagram shows a cartesian space constructed on three axes, corresponding to the domains of three attributes. In this simple example, the domain Make assumes the values 'Ferrari' and 'Porsche', the domain Year assumes the values 1998 and 1999, and the domain Colour assumes the value 'Red'. The points in the space represent the tuples of Figure 13.12. Note that not all the points are normally present in the DW. In our example, three out of four are present. The three cartesian planes represent the aggregations of one dimension, the cartesian axes represent the aggregations of two dimensions and the origin of the cartesian axes represents the aggregation of all three dimensions. Obviously, a conceptually similar cartesian representation in space of n dimensions is possible in the case of data cube with arbitrary number of grouping attributes.

The complexity of the evaluation of the data cube increases exponentially with the increase of the number of attributes that are grouped. A different extension of SQL builds progressive aggregations rather than building all possible aggregations; thus, the complexity of the evaluation of this operation increases only in a linear fashion with the increase of the number of grouping attributes. This extension requires the with roll up clause, which replaces the with cube clause, as illustrated in the following example:

select Make, Year, Colour, sum(Sales)
from Sales
where (Make = 'Ferrari' or Make = 'Porsche')

and Colour = 'Red'

and Year between 1998 and 1999
group by Make, Year, Colour
with roll up

The result of the evaluation of this query is shown in Figure 13.15.

Note the progression of the aggregations, from right to left, and note that the result has fewer tuples than the result of the data cube operation.

The with cube and with roll up queries are present in many relational DBMSs and do not necessarily require the presence of a DW. In any case, an interpretation of the two queries according to the star model is always possible, as the attributes of the group by clause carry out the role of dimensions, while the remaining attributes of the select clause describe the aggregate operations applied to facts.

13.4 Development of the data warehouse

There are two alternative approaches to the development of a DW.

· The first approach consists of the use of relational technology, suitably adapted and extended. The data is stored using tables, but the analysis operations are carried out efficiently using special data structures. This type of system is called ROLAP (Relational OLAP)
· The second, more radical, approach consists of storing data directly in multi dimensional form, using vector data structures. This type of system is called MOLAP (Multidimensional OLAP).
The MOLAP solution is adopted by a large number of specialized products in the management of data marts. The ROLAP solution is used by large relational vendors. These add OLAP-specific solutions to all the technological experience of relational DBMSs. and thus it is very probable that ROLAP will prevail in the medium or long term.

In each case, the ROLAP and MOLAP technologies use innovative solutions for data access, in particular regarding the use of special indexes and view materialization (explained below). These solutions take into account the fact that the DW is essentially used for read operations and initial or progressive loading of data, while modifications and cancellations are rare. Large DWs also use parallelism, with appropriate fragmentation and allocation of data, to make the queries more efficient. Below, we will concentrate only on ROLAP technology.

13.4.1 Bitmap and join indexes

Bitmap indexes allow the efficient creation of conjunctions and disjunctions in selection conditions, or algebraic operations of union and intersection. These are based on the idea of representing each tuple as an element of a bit vector. The length of the vector equals the cardinality of the table. While the root and the intermediate nodes of a bitmap index remain unchanged (as with the indexes with B or B+ trees described in Chapter 9), the leaves of the indexes contain a vector for each value of the index. The bits in the vector are set to one for the tuples that contain that value and to zero otherwise.

Let us suppose for example that we wish to make use of a bitmap index on the attributes Name and Agency of the PROMOTION table, described in Section 13.2.2. To identify the tuple corresponding to the predicate Name = 'SuperSaver' and Agency = 'PromoPlus' we need only access the two vectors corresponding to the constants 'SuperSaver' and 'PromoPlus' separately, using indexes, extract them, and use an and bit by bit. The resulting vector will contain a one for the tuples that satisfy the condition, which are thus identified. Similar operations on bits allow the management of disjunctions.
Obviously, a bitmap index is difficult to manage if the table undergoes modifications. It is convenient to construct it during the data load operation for a given cardinality of the table.

Join indexes allow the efficient execution of joins between the dimension tables and the fact tables. They extract those facts that satisfy conditions imposed by the dimensions. The join indexes are constructed on the dimension keys; their leaves, instead of pointing to tuples of dimensions, point to the tuples of the fact tables that contain those key values.

Referring again to the data mart described in Section 13.2.2, a join index on the attribute PromoCode will contain in its leaves references to the tuples of the facts corresponding to each promotion. It is also possible to construct join indexes on sets of keys of different dimensions, for example on PromoCode and ProdCode.
As always in the case of physical design (see Chapter 9), the use of bitmap and join indexes is subject to a cost-benefit analysis. The costs are essentially due to the necessity for constructing and storing indexes permanently, and the benefits are related to the actual use by the DW system for the resolution of queries.

13.4.2 View materialization

Many queries to the DW require repeated laborious aggregations and syntheses. In this case, it is convenient to evaluate views that express the aggregated data, and store them permanently. This technique is called view materialization. For example, in the data mart relating to the management of the supermarkets, a materialized view could contain the sales data aggregated by product, or the monthly sales of each store. The queries about these aggregations would be directly carried out on the materialized view, instead of in the DW.

The choice of views to be materialized is quite a complex problem, which requires the knowledge of typical queries used in data marts and their frequency of execution. In general, a view is convenient when it can sensibly reduce the execution time of several frequently used queries.

As seen in Chapter 3, each view depends on a set of base tables. The materialization is very convenient in an environment such as the DW, in which the base tables are not continuously modified. When the tables are reloaded or incrementally modified, however, we must update the views, propagating the effects of the modifications on the base tables to them. As mentioned in Chapter 12, data derivation is a typical internal application of the active rules, which indeed can be used to incrementally update materialized views

13.5 Data mining

The term data mining is used to characterize search techniques used on information hidden within the data of a DW. Data mining is used for market research, for example the identification of items bought together or in sequence so as to optimize the allocation of goods on the shelves of a store or the selective mailing of advertising material. Another application is behavioural analysis, for example the search for frauds and the illicit use of credit cards. Another application is the prediction of future costs based on historical series, for example, concerning medical treatments. Data mining is an interdisciplinary subject, which uses not only data management technology, but also statistics - for the definition of the quality of the observations – and artificial intelligence – in the process of discovering general knowledge out of data. Recently, data mining has acquired significant popularity and has guaranteed a competitive advantage for many commercial businesses, which have been able to improve their management and marketing policies.

13.5.1 The data mining process

The objective of data mining is the extraction of useful information from large sets of data. This task is carried out repetitively and adoptively, initiating a progressive extraction of knowledge, which is divided into four phases.

1. Comprehension of the domain: it is impossible to extract useful information if a good understanding of the application domain in which it operates is not developed beforehand.

2. Preparation of the data set: this step requires the identification of a subset of data of the DW on which to carry out the data mining. It also requires the encoding of data to make it suitable input to the data mining algorithm.

3. Discovery of patterns: this consists of the application of techniques of data mining on the data set extracted earlier, in order to discover repetitive patterns in the data. Later in the chapter, we will concentrate our attention especially on the techniques used in this step.

4. Evaluation of patterns: this consists of drawing implications from the discovered patterns, evaluating which experiments to carry out next and which hypothesis to formulate, or which consequences to draw in the process of knowledge discovery.

The data mining process has an impact when it allows operational decisions to be made, for example, modifying the allocation policies of the merchandise in the large store or changing the credit concession policies.

13.5.2 Data mining problems

Although each application has specific features, there are various general problems that have been identified with a regular, recurrent structure; these problems can be formalized and then solved by a suite of data mining algorithms. Usually, data mining algorithms are characterized by good scalability, that is, they guarantee good efficiency characteristics when applied to large data sets. Below, we will look at three classic problems: the discovery of association rules, discretization and classification.

Discovery or association rules Association rules discover regular patterns within large data sets, such as the presence of two items within a group of tuples. The classic example, called basket analysis, is the search for goods that are frequently purchased together. A table that describes purchase transactions in a large store is shown in Figure 13.16. Each tuple represents the purchase of specific merchandise. The transaction code for the purchase is present in all the tuples and is used to group together all the tuples in a purchase. Rules discover situations in which the presence of an item in a transaction is linked to the presence of another item with a high probability.

More correctly, an association rule consists of a premise and a consequence. Both premise and consequence can be single items or groups of items. For example, the rule skis → ski poles indicates that the purchase of skis (premise) is often accompanied by the purchase of ski poles (consequence). A famous rule about supermarket sales, which is not obvious at first sight, indicates a connection between nappies (diapers) and beer. The rule can be explained by considering the fact that nappies are often bought by fathers (this purchase is both simple and voluminous, hence mothers are willing to delegate it), but many fathers are also typically attracted by beer. This rule has caused the increase in supermarket profit by simply moving the beer to the nappies department.

We can measure the quality of association rules precisely. Let us suppose that a group of tuples constitutes an observation; we can say that an observation satisfies the premise (consequence) of a rule if it contains at least one tuple for each of the items. We can than define the properties of support and confidence.
· Support: this is the fraction of observations that satisfy both the premise and the consequence of a rule.

· Confidence: this is the fraction of observations that satisfy the consequence among those observations that satisfy the premise.

Intuitively, the support measures the importance of a rule (how often premise and consequence are present) while confidence measures its reliability (how often, given the premise, the consequence is also present). The problem of data mining concerning the discovery of association rules is thus enunciated as: find all the association rules with support and confidence higher than specified values.
For example, Figure 13.17 shows the associative rules with support and confidence higher than or equal to 0.25. If, on the other hand, we were interested only in the rules that have both support and confidence higher than 0.4, we would only extract the rules jacket → T-shirt and T-shirt → jacket.
Variations on this problem, obtained using different data extractions but essentially the same search algorithm, allow many other queries to be answered. For example, the finding of merchandise sold together and with the same promotion, or of merchandise sold in the summer but not in the winter, or of merchandise sold together only when arranged together. Variations on the problem that require a different algorithm allow the study of time-dependent sales series, for example, the merchandise sold in sequence to the same client. A typical finding is a high number of purchases of video recorders shortly after the purchases of televisions. These rules are of obvious use in organizing promotional campaigns for mail order sales.

Association rules and the search for patterns allow the study of various problems beyond that of basket analysis. For example, in medicine, we can indicate which antibiotic resistances are simultaneously present in an antibiogram, or that diabetes can cause a loss of sight ten years after the onset of the disease.

Discretization This is a typical step in the preparation of data, which allows the representation of a continuous interval of values using a few discrete values, selected to make the phenomenon easier to see. For example, blood pressure values can be discretized simply by the three classes 'high', 'average' and 'low', and this operation can successively allow the correlation of discrete blood pressure values with the ingestion of a drug.

Classification This aims at the cataloguing of a phenomenon in a predefined class. The phenomenon is usually presented in the form of an elementary observation record (tuple). The classifier is an algorithm that carries out the classification. It is constructed automatically using a training set of data that consists of a set of already classified phenomena; then it is used for the classification of generic phenomena. Typically, the classifiers are presented as decision trees. In these trees the nodes are labelled by conditions that allow the making of decisions. The condition refers to the attributes of the relation that stores the phenomenon. When the phenomena are described by a large number of attributes, the classifiers also take responsibility for the selection of few significant attributes, separating them from the irrelevant ones.

Suppose we want to classify the policies of an insurance company, attributing to each one a high or low risk. Starting with a collection of observations that describe policies, the classifier initially determines that the sole significant attributes for definition of the risk of a policy are the age of the driver and the type of vehicle. It then constructs a decision tree, as shown in Figure 13.18. A high risk is attributed to all drivers below the age of 23, or to drivers of sports cars and trucks.

Policy(Number,Age,AutoType)

13.5.3 Data mining perspectives

Data mining has been developed recently and is a result of various application demands. It is interdisciplinary, using large thematic areas of databases, artificial intelligence and statistics. It is a modern discipline, still in the early stages of development, but evolving very rapidly.

Observing the actual development of the discipline, some issues emerge. In the first place, it seems necessary and urgent that it is systematized, to allow the various problems of data mining to be viewed together. Up to now, they have been considered separately by researchers and managed using specific systems for each specific problem. We expect to see, in the near future, the definition of standard paradigms for the formulation of data mining problems and of general techniques for their resolution

It is then necessary to deal with the management of large data sets. The current algorithms of data mining are not yet able to guarantee high scalability in the case of very large databases. The problem can be approached using sampling techniques, which consists of carrying out data mining or reduced – but significant – samples of the database.

Finally, we need to know the extent to which the data mining tools can be generic, that is, application-independent. In many cases, problems can be solved only if one takes into account the characteristics of the problems when proposing solutions. Aside from the general tools, which resolve the problems described in the section and few other problems of a general nature, there are also a very high number of problem-specific data mining tools. These last have the undoubted advantage of knowing about the application domain and can thus complete the data mining process more easily, especially concerning the interpretation of results; however, they are less generic and reusable.

13.6 Bibliography

In spite of the fact that the multi-dimensional data model was defined towards the end of the seventies, the first OLAP systems emerged only at the beginning of the nineties. A definition of the characteristics of OLAP and a list of rules that the OLAP systems must satisfy is given by Codd [31]. Although the sector was developed only a few years ago, many books describe design techniques for DWs They include Inmon [49] and Kimball [53]. The data cube operator is introduced by Gray et al. [45].
The literature on data mining is still very recent. A systematic presentation of the problems of the sector can be found in the book edited by Fayyad et al. [40], which is a collection of various articles. Among them, we recommend the introductory article by Fayyad, Piatetsky-Shapiro and Smyth, and the one on association rules by Agrawal, Mannila and others.
13.7 Exercises

Exercise 13.1 Complete the data mart projects illustrated in Figure 13.4 and Figure 13.5 identifying the attributes of facts and dimensions.

Exercise 13.2 Design the data marls illustrated in Figure 13.4 and Figure 13.5, identifying the hierarchies among the dimensions.

Exercise 13.3 Refer to the data mart for the management of supermarkets, described in Section 13.2.2. Design an interactive interface for extraction of the data about classes of products sold in the various weeks of the year in stores located in large cities. Write the SQL query that corresponds to the proposed interface.

Exercise 13.4 Describe roll-up and drill-down operations relating to the result of the query posed in the preceding exercise.

Exercise 13.5 Describe the use of the with cube and with roll up clauses in conjunction with the query posed in Exercise 13. 3.

Exercise 13.6 Indicate a selection of bitmap indexes, join indexes and materialized views for the data mart described in Section 13.2. 2.

Exercise 13.7 Design a data mart for the management of university exams. Use as facts the results of the exams taken by the students. Use as dimensions the following:

5. time;

6. the location of the exam (supposing the faculty to be organized over more than one site);

7. the lecturers involved;

8. the characteristics of the students (for example, the data concerning pre-university school records, grades achieved in the university admission exam, and the chosen degree course).

Create both the star schema and the snowflake schema, and give their translation in relational form. Then express some interfaces for analysis simulating the execution of the roll up and drill down instructions. Finally, indicate a choice of bitmap indexes, join indexes and materialized views.

Exercise 13.8 Design one or more data marts for railway management. Use as facts the total number of daily passengers for each tariff on each train and on each section of the network. As dimensions, use the tariffs, the geographical position of the cities on the network, the composition of the train, the network maintenance and the daily delays.
Create one or more star schemas and give their translation in relational form.

Exercise 13.9 Consider the database in Figure 13.19. Extract the association rules with support and confidence higher or equal to 20 per cent. Then indicate which rules are extracted if a support higher than 50 percent is requested.

Exercise 13.10 Discretize the prices of the database in Exercise 13.9 into three values (low, average and high). Transform the data so that for each transaction a single tuple indicates the presence of at least one sale for each class. Then construct the association rules that indicate the simultaneous presence in the same transaction of sales belonging to different price classes. Finally, interpret the results.

Exercise 13.11 Describe a database of car sales with the descriptions of the automobiles (sports cars, saloons, estates, etc.), the cost and cylinder capacity of the automobiles (discretized in classes), and the age and salary of the buyers (also discretized into classes). Then form hypotheses on the structure of a classifier showing the propensities of the purchase of cars by different categories of person.
Figure 13.1 Separation between the OLTP and OLAP environments.

Figure 13.2 Architecture of a data warehouse.

Figure 13.3 Data mart for a supermarket chain.

Figure 13.4 Data mart for an insurance company.

Figure 13.5 Data mart for a medical information system

Figure 13.6 Snowflake schema for a supermarket chain.

PROMOTION Name�
PRODUCT Name�
TIME.Month�
Qty�
Schema�
�
Three for two�
Wine�
Jan...Dec�
�
�
�
Coupon 15%�
Pasta�
�
�
Options�
�
SuperSaver�
Oil�
�
�
�
�
SuperSaver�
Pasta... Oil�
Feb... Apr�
�
Condition�
�
�
PRODUCT Name�
TIME.Month�
sum�
View�
�

Figure 13.7 Interface for the formulation of an OLAP query

�
Feb�
Mar�
Apr�
�
Oil�
5K�
5K�
7K�
�
Pasta�
45K�
50K�
51K�
�

Figure 13.8 Result of the OLAP query.

Time. Month�
Product.Name�
sum(Qty)�
�
Feb�
Pasta�
45K�
�
Mar�
Pasta�
50K�
�
Apr�
Pasta�
51K�
�

Figure 13.9 Subset of the result of the olap query

TIme.Monih�
Product.Name�
Zone�
sum(Qty)�
�
Feb�
Pasta�
North�
18K�
�
Feb�
Pasta�
Centre�
18K�
�
Feb�
Pasta�
South�
12K�
�
Mar�
Pasta�
North�
18K�
�
Mar�
Pasta�
Centre�
18K�
�
Mar�
Pasta�
South�
14K�
�
Apr�
Pasta�
North�
18K�
�
Apr�
Pasta�
Centre�
17K�
�
Apr�
Pasta�
South�
16K�
�

Figure 13.10 Drill-down of the table represented in Figure 13.9.

Product.Name�
Zone�
sum(Qty)�
�
Pasta�
North�
54K�
�
Pasta�
Centre�
50K�
�
Pasta�
South�
42K�
�

Figure 13.11 Roll-up of the table represented in Figure 13.10.

Make�
Year�
Colour�
Sales�
�
Ferrari�
1998�
Red�
50�
�
Ferrari�
1999�
Red�
85�
�
Porsche�
1998�
Red�
80�
�

Figure 13.12 View on a SALE summary table.

Make�
Year�
Colour�
sum(Sales)�
�
Ferrari�
1998�
Red�
50�
�
Ferrari�
1999 �
Red�
85�
�
Ferrari�
1998�
ALL�
50�
�
Ferrari�
1999�
ALL�
85�
�
Ferrari�
ALL�
Red�
135�
�
Ferrari�
ALL�
ALL�
135�
�
Porsche�
1998 �
Red�
80�
�
Porsche�
1998�
ALL�
80�
�
Porsche�
ALL�
Red�
80�
�
Porsche�
ALL�
ALL�
80�
�
ALL�
1998�
Red�
130�
�
ALL�
1999�
Red�
8S�
�
ALL�
ALL�
Red�
215�
�
ALL�
1998�
ALL�
130�
�
ALL�
1999�
ALL�
85�
�
ALL�
ALL�
ALL�
215�
�

Transaction�
Date�
Goods�
Qty�
Price�
�
1�
17/12/98�
ski-pants�
1�
140�
�
1�
17/12/98�
boots�
1�
180�
�
2�
18/12/98�
ski-pole�
1�
20�
�
2�
18/12/98�
T-shirt�
1�
25�
�
2�
18/12/98�
jacket�
1�
200�
�
2�
18/12/98�
boots�
1�
70�
�
3�
18/12/98 �
jacket�
1�
200�
�
4�
19/12/98 �
jacket�
1�
200�
�
4�
19/12/98�
T-shirt�
3�
2S�
�
5�
20/12/96�
T-shirt�
1�
25�
�
5�
20/12/98�
jacket�
1�
200�
�
5�
20/12/98�
tie�
1�
25�
�

Figure 13.13 Data cube of the table represented in Figure 13.12

Figure 13.14 Spatial representation of the data cube of Figure 13. 13.

Make�
Year�
Colour�
sum(Sales)�
�
Ferrari�
1998�
Red -�
50�
�
Ferrari�
1999�
Red�
85�
�
Porsche�
1998�
Red�
80�
�
Ferrari�
1998�
ALL�
50�
�
Ferrari�
1999�
ALL�
85�
�
Porsche�
1998�
ALL�
80�
�
Ferrari�
ALL�
ALL�
135�
�
Porsche�
ALL�
ALL�
80�
�
ALL�
ALL�
ALL�
215�
�

Figure 13.15 Roll-up of the table represented in Figure 13.12.

Transaction�
Date�
Goods�
Qty�
Price�
�
1�
17/12/98�
ski-pants�
1�
140�
�
1�
17/12/98�
boots�
1�
180�
�
2�
18/12/98�
T-shirt�
1�
25�
�
2�
18/12/98�
jacket�
1�
300�
�
2�
18/12/98�
boots�
1�
70�
�
3�
18/12/98�
jacket�
1�
300�
�
4�
19/12/98�
jacket�
1�
300�
�
4�
19/12/98�
T-shirt�
3�
25�
�

Figure 13.16 Database for basket analysis

Premise�
Consequence�
Support�
Confidence�
�
ski-pants�
boots�
0.25�
1�
�
boots�
ski-pants�
0.25�
0.5�
�
T-shirt�
boots�
0.25�
0-5�
�
T-shirt�
jacket�
0.5�
1�
�
boots�
T-shirt�
0.25�
0.5�
�
boots�
jacket�
0.25�
0.5�
�
jacket�
T-shirt�
0.5�
0.66�
�
jacket�
boots�
0.25�
0.33�
�
{T-shirt, boots}�
jacket�
0.25�
1�
�
{T-shirt, jacket}�
boots�
0.25�
0.5�
�
{boots. jacket}�
T-shirt�
0.25�
1�
�

Figure 13.17 Association rules for the basket analysis database

Figure 13. 18 Classifier to identify risk policies.

Figure 13.19 Database for Exercise 13.9.

12.8

