Chapter 6
Conceptual Design

[image: image23.png]

Conceptual design

The conceptual design of a database consists of the construction of an Entity-Relationship schema, providing an optimal description (of the user requirements. Even for simple applications, the schema can contain many concepts, correlated in a quite complex way. It follows that the construction of the final schema is, often, an incremental process. The conceptual schema is refined and enriched during a series of transformations and possibly corrections. In this chapter, we describe the strategies that can be followed during the development of a conceptual schema.

Before we begin to discuss these strategies, it is worth devoting some attention to the activity that precedes the actual design process itself: the collection and analysis of the requirements. This phase is not entirely separate from design, but often tends to overlap with it. The construction of an E-R schema begins well before the collection of requirements is completed and it can influence further collection activity.

The discussion of requirements collection and analysis is followed by a presentation of some general criteria for transforming informal requirements into Entity-Relationship constructs. We then move on to illustrate the most important design strategies and to analyze the qualities that a well-designed conceptual schema must possess. We close the chapter with a comprehensive method for conceptual design. To give a better explanation of the various aspects, we use a practical example, which refers to the design of an application for a training company.

6.1 Requirements collection and analysis

It must first be stated that the activities of requirements collection and analysis are difficult to standardize, because they depend greatly on the application. We will, however, discuss some practical rules that it is helpful to follow in this phase of the development of a database.

By requirements collection we mean the complete identification of the problems that the application must solve, and the features that should characterize such an application. By this, we mean both the static aspects (the data) and the dynamic aspects (the operations on the data). The requirements are first gathered into specifications that are generally expressed in natural language; therefore, they are often ambiguous and disorganized. The requirements analysis consists of the clarification and organization of the requirements specification. Obviously, we are dealing with activities that are closely related to one another: the task of analysis can begin as soon as the first requirements are known and can then proceed in step with the task of collection. Moreover, the need for further collection of requirements can be identified as the result of the analysis of previously obtained requirements. The requirements generally come from different sources, as follows.

· The users of the application. In this case, the information is acquired through interviews or by means of documents specifically written and exchanged for this purpose.

· All the existing documentation that has some connection with the problem: forms, internal rules, business procedures, laws and regulations, etc. In this case, gathering and selection are required. The user will usually help here, but the responsibility rests with the designer.

· Possible earlier applications that are to be replaced or that must interact in some way with the new application. The knowledge of these software packages (record formats, screen forms, algorithms, associated documentation) can provide us with important information that also relates to existing problems that must be resolved.

It should be stressed that, in the requirement acquisition process, an important role is played by the interactions with the users of the information system. During this interaction, the various users can provide different information, often complementary, but also at times contradictory. In general, the higher-level users have a view that is wider but less detailed. They can, however, direct the designer to the experts on individual problems.

As a rule, during the course of the interviews, it is a good idea to make continual checks on the consistency of the information being gathered. This can be done by means of practical examples or by asking for precise definitions and classifications. It is furthermore very important to try to identify which aspects are essential and which marginal, and to work towards further refinements.

As we mentioned earlier, the requirements specifications are often written in natural language, at least in the first draft. Natural language is, by nature, subject to ambiguity and misinterpretation. Therefore, we need to carry out an in-depth analysis of the specification document in order to remove any inaccuracies and ambiguous terms. To develop some practical rules for carrying out this task, consider this example. Imagine that we need to design a database for a training company and that we have gathered the data specifications shown in Figure 6.1. The data was gathered through interviews with the company personnel. Note that we have also acquired information on the expected data load.

	
	Training Company

	1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
	We wish to make a database for a company that runs training courses. For this we must store data about the trainees and the instructors. For each course participant (about 5000), identified by a code, we want to store the social security number, surname, age, sex, place of birth, employer's name, address and telephone number, previous employers (and period employed), the courses attended (there are about 200 courses) and the final assessment of each course. We need also to represent the seminars that each participant is attending at present and, for each day, the places and times the classes are held. Each course has a code and a title and any course can be given any number of times. Each time a particular course is given, we will call it an 'edition' of the course. For each edition, we represent the start date, the end date, and the number of participants. If a trainee is a self-employed professional, we need to know his or her area of expertise, and, if appropriate, his or her title. For somebody who works for a company, we store the level and position held. For each instructor (about 300), we will show the surname, age, place of birth, the edition of the course taught, those taught in the past and the courses that the tutor is qualified to teach. All the instructors' telephone numbers are also stored. An instructor can be permanently employed by the training company or can be freelance.

Figure 6. 1 Example of requirements expressed in natural language.

It is evident that such material contains a number of ambiguities and inaccuracies. For example, we have interchangeable use of participants or trainees, tutors or instructors, courses or seminars. We will now establish some rules for writing requirements specifications more precisely and without ambiguities.

· Choose the appropriate level of abstraction. It is wise to avoid terms that are too general or too specific since they can make a concept less clear. For example, in our case. the terms period (on line 6), title (line 15) and assessment (line 7) could be specified more precisely (for example, as start date and end date. professional title and marks out of ten).
· Standardize sentence structure. In specifying requirements, it is preferable always to use the same style. For example, 'for <concept> we hold <properties>'.
· Avoid complex phrases. Definitions should be kept clear and simple. For example, employee is preferable to somebody who works for a company (line 15).

· Identify synonyms and homonyms, and standardize terms. Synonyms are words that have the same meaning, for example, tutor (line 18) and instructor (line 16), course participant (line 3) and trainee (line 2); homonyms are words with more than one meaning, for example, place, meaning both town of birth (line 4) and classroom where the classes are held (line 9). These situations can cause ambiguities and must be clarified: for synonyms, single terms must be chosen, and for homonyms, different terms must be used.

· Make cross-references explicit. The absence of a reference between terms can make certain concepts ambiguous. For example, in line 5, it is not clear whether the terms address and telephone numbers are referring to the trainees or to their employers. Furthermore, in the phrase somebody who works for ... (line 15), we must clarify to whom exactly we are referring (trainees, instructors?) in order to avoid confusion.

· Construct a glossary of terms. It is very useful, both for understanding and for accuracy of terms used, to build a glossary. For each term, the glossary contains a brief description, possible synonyms and reference to other terms contained in the glossary with which there is a logical link. A brief glossary for our application is shown in Figure 6.2.

	Term
	Description
	Synonym
	Links

	Trainee
	Participant in a course. Can be an employee or self-employed.
	Participant
	Course, Company

	Instructor
	Course tutor. Can be freelance.
	Tutor
	Course

	Course
	Course offered. Can have various editions.
	Seminar
	Instructor, Trainee

	Company
	Company by which participant is employed or has been employed,
	
	Trainee

Figure 6.2 An example of a glossary of terms.

Once the various ambiguities and inaccuracies have been identified, they can be eliminated by substituting more appropriate terms for the incorrect ones. Where doubt remains, the user who provided the information must be re-interviewed, or the particular document must be consulted again.

Let us look at the main modifications to be made to our text. First, all the instances of course participant must be replaced by trainee. Then, as we have said, place of birth (lines 4 & 17) should be substituted by town of birth. Moreover, we have to make explicit that address and telephone number (line 5) refers to the employers of the trainees. The terms period (line 6) and assessment (line 7) must be replaced by start date and end date and marks out of ten respectively. It must also be clear that a trainee does not attend seminars (line 8) but rather editions of courses. Also, the term place (line 9) must be replaced by classroom, title (line 15) by professional title, and tutor (line 18) by instructor. Finally, title of course (line10) is a homonym of professional title of a trainee; in this case, we could replace title of course by name of course.
At this point, we can rewrite our specifications using the suggested modifications. It is very useful, in this phase, to break down the text into groups of homogenous phrases, referring to the same concept. In this way, we can begin to impose a structure on the data requirements as shown in 6.3.

Of course, as well as the specification of the data itself, we also need to specify the operations to be executed on this data. For this, we must use the same terminology as that chosen for the data and we must find out how often the various operations will need to be carried out. As we shall see, this knowledge will be important in the logical design phase. For our application, the operations on the data could be as follows:

· operation 1: insert a new trainee including all his or her data (to be carried out approximately 40 times a day);

· operation 2: assign a trainee to an edition of a course (50 times a day);

· operation 3: insert a new instructor, including all his or her data and the courses he or she is qualified to teach (twice a day);

· operation 4: assign a qualified instructor to an edition of a course (15 times a day);
· operation 5: display all the information on the past editions of a course with title, class timetables and number of trainees (10 times a day);

· operation 6: display all the courses offered, with information on the instructors who are qualified to teach them (20 times a day);
· operation 7: for each instructor, find the trainees for all the courses he or she is teaching or has taught (5 times a week);

· operation 8: carry out a statistical analysis of all the trainees with all the information about them, about the editions of courses they have attended and the marks obtained (10 times a month).
	Phrases of a general nature

	We wish to create a database for a company that runs training courses. We wish to hold the data for the trainees and the instructors.

	Phrases relating to the trainees

	For each trainee (about 5000), identified by a code. we will hold the social security number, surname, age, sex, town of birth, current employer, previous employers (along with the start date and the end date of the period employed), the editions of the courses the trainee is attending at present and those he or she has attended in the past, with the final marks out often.

	Phrases relating to the employers of the trainees

	For each employer of a trainee we will hold the name, address and telephone number.

	Phrases relating to the courses

	For each course (about 300), we will hold the name and code. Each time a particular course is given, we will call it an 'edition' of the course. For each edition, we will hold the start date, the end date and the number of participants. For the editions currently in progress, we will hold the dates, the classrooms and the times in which the classes are held.

	Phrases relating to specific types of trainee

	For a trainee who is a self-employed professional, we will hold the area of expertise and, if appropriate, the professional title. For a trainee who is an employee, we will hold the level and position held.

	Phrases relating to the instructors

	For each instructor (about 300), we will hold surname, age, town of birth, all telephone numbers, the edition of courses taught, those taught in the past and the courses the instructor is qualified to teach. The instructors can be permanently employed by the training company or can be freelance.

Figure 6.3 Example of structuring of requirements.

Once the structuring of the requirements is complete, we are ready to begin the first design phase. This step consists of the construction of a conceptual schema that describes all the specifications of the collected data

6.2 General criteria for data representation

As an introduction to design techniques, we will establish some general criteria for the translation of informal specifications into Entity-Relationship constructs. It must be stressed that the same information can be modeled in many different ways. This is because two designers can have different perceptions of the same situation. We can however establish some general guidelines for the E-R model. It is recommended, overall, that the 'conceptual rules' of the model should be followed.

· If a concept has significant properties and/or describes classes of objects with an autonomous existence, it is appropriate to represent it by an entity. For example, referring to the specifications for the training company above, it makes sense to represent the concept of instructor with an entity, because it possesses various properties (surname, age, town of birth) and its existence is independent of the other concepts.

· If a concept has a simple structure, and has no relevant properties associated with it, it is convenient to represent it by an attribute of another concept to which it refers. For example, the concept of age can certainly be represented as an attribute of the trainee. In general, the concept of town could have significant properties. In our application, however, it is better to model it as an attribute, because, apart from the name, none of its other properties is of interest to us.

· If the requirements contain a concept that provides a logical link between two (or more) entities, this concept can be represented by a relationship. For example, in our application, the concept of attending a course can certainly be represented by a relationship between the entities that represent the trainees and the editions of courses. It must be stressed that this is valid only in the situation in which the concept does not, itself, have the characteristics of the entity. A typical example, which we have already mentioned in Section 5.3.1, is the concept of exam relating to students and courses. This concept can be represented by a relationship between student and course if the aspect of interest is, say, only the individual student marks. Suppose however, that we are also interested in the date, the location and the examining board, and, above all, that we wish to represent the fact that a student can take an exam more than once for the same course. In this case the exam must be represented by an entity linked by one-to-many relationships to the entities representing students and courses.

· If one or more concepts are particular cases of another concept, it is convenient to represent them by means of a generalization. In our application, it is obvious that the concepts of professional and employee constitute particular examples of the concept of trainee and it is therefore a good idea to define a generalization between the entities that represent these concepts.

[image: image24.png]iy

[image: image25.png]Schema |.m

Schema n,|

Integration of schemas

Final schema

These criteria are valid in general, and are thus independent of the chosen design strategy. In fact, for every strategy, it is eventually necessary to translate a specification into an E-R construct.

6.3 Design strategies

The development of a conceptual schema based on its specification must be considered to all intents and purposes engineering process, and, as such, design strategies used in other disciplines can be applied to it. Let us examine these strategies with specific reference to the modeling of a database.

6.3.1 Top-down strategy

In this strategy, the conceptual schema is produced by means of a series of successive refinements, starting from an initial schema that describes all the requirements by means of a few highly abstract concepts. The schema is then gradually expanded by using appropriate modifications that increase the detail of the various concepts. This procedure is shown in Figure 6.4 where the various levels of refinement are shown. Each of these levels contains a schema that describes the same information with a different degree of detail. Thus, in a pure top-down strategy, all the concepts present in the final schema are present, in principle, at each level of refinement

Moving from one level to another, the schema is modified using some basic transformations called top-down transformation primitives. Major examples of top-down transformation primitives are shown in Figure 6.5. As we can see, these primitives operate on a single concept of the schema and transform it into a more complex structure, capable of describing the original concept in more detail.
	Transformation
	Initial concept
	Result

	T1
From one entity to two entities and a relationship between them
	[image: image1.png]

	[image: image2.png]

	T2
From one entity to a generalization
	[image: image3.png]

[image: image4.png]

	[image: image5.png]

	T3
From one relationship to multiple relationships
	
[image: image6]
	[image: image7.png]0¢

	T4
From one relationship to an entity with relationships
	[image: image8.png]

	[image: image9.png]

	T5
Adding attributes to an entity
	[image: image10.png]

	[image: image11.png]X

	T6,

Adding attributes to a relationship
	
[image: image12]
	[image: image13.png]

Figure 6.5 Top-down transformation primitives.

Transformation T1: this is applied when an entity describes two different concepts logically linked to each other. For example, in the training company application, we could have begun with an entity COURSE. Then we realize that this is too abstract and that COURSETYPE (having a code and a title) should be distinct from COURSEEDITION (having a start date and an end date) and that these entities are linked by a relationship that we can call TYPE.
Transformation T2: this is applied when an entity is made up of distinct sub-entities. In our application this happens when we realize that among the trainees there are the distinct cases EMPLOYEE and PROFESSIONAL.
Transformation T3: this is applied when a relationship describes two or more different concepts linking the same entities. For example, in the relationship TEACHING between instructors and courses, CURRENTTEACHING should be distinguished from PASTTEACHING.
Transformation T4: this is applied when a relationship describes a concept having an autonomous existence. For example, if a relationship CONTRACT between an entity CONSULTANT and an entity COMPANY has many attributes, then it is better represented by an entity linked to the others by means of binary relationships.

Transformation T5: this is applied for the addition of properties (attributes) to entities. This happens, for example, when we refine the entity TRAINEE by adding its attributes SocialSecurityNumber, Surname, Age, Sex and TownOfBirth.

Transformation T6: this is applied to add properties to relationships, in a similar way to transformation T5
The advantage of the top-down strategy is that the designer can start with a full representation of the requirements, even though some details are missing Obviously, this is possible only if we possess a global view of all the relevant concepts. However, this is extremely difficult when dealing with complex cases.
6.3.2 Bottom-up strategy

[image: image26.png]

[image: image27.png]TRaNeE

Arre

In this strategy, the initial specifications are decomposed into smaller and smaller components, until each component describes an elementary fragment of the specifications. At this point, the various components are represented by simple conceptual schemas that can also consist of single concepts. The various schemas thus obtained are then amalgamated until a final conceptual schema is reached. This procedure is shown in Figure 6.6, which shows the decomposition of the requirements, the subsequent construction of the basic E-R schemas, and the final phase in which the elementary schemas are integrated. In contrast to the top-down strategy, the various concepts present in the final schema are progressively introduced.

In this case also, the final schema is obtained by means of some elementary transformations, here called bottom-up transformation primitives. In Figure 6.7 the main bottom-up transformation primitives are shown. As we can see, these primitives introduce into the schema new concepts that were not present previously and are capable of describing aspects of the application that have not been taken into account before.

Transformation T1: this is applied when a class of objects with properties in common is identified in the specifications. For example, in the application for the training company, this can happen when we identify the entity COURSECLASS (held in a certain classroom at a certain time) from the course specification.
Transformation T2: this is applied when a logical link between two entities is identified in the specifications in our application, this can happen when we identify the relationship QUALIFICATION between the entities INSTRUCTOR and COURSE.
Transformation T3: this is applied when a generalization between entities is identified in the specification. For example, in our application this can happen when we understand that the entity INSTRUCTOR is a generalization of the entities PERMANENT and FREELANCE.

Transformation T4: this is applied when we identify an entity that can be regarded as an aggregation of a series of attributes. For example, this happens in our application if we identify the entity TRAINEE from the properties SocialSecurityNumber, Surname, Age, Sex and TownOfBirth.

Transformation T5: this is applied in a way similar to transformation T4, when a relationship is identified that can be regarded as an aggregation of attributes.
	Transformation
	Initial concept
	Result

	T1
Generation of an entity
	
	[image: image14.png]

	T2
Generation of a relationship
	[image: image15.png]

	[image: image16.png]

	T3,

Generation of a

generalization
	[image: image17.png]

	[image: image18.png]

	T4
Aggregation of attributes on an entity
	[image: image19.png]

	[image: image20.png]

	T5,

Aggregation of attributes on a relationship
	[image: image21.png]

	[image: image22.png]

Figure 6.7 Bottom-up transformation primitives.

The advantage of the bottom-up strategy is that it allows the decomposition of a problem into simple components, which are often easily identified, and whose design can be handled by different designers if necessary. It therefore lends itself to work undertaken in groups or sub​divided within a group. On the other hand, its disadvantage is the fact that it requires the integration of many conceptual schemas, an operation that often presents difficulties.
6.3.3 Inside-out strategy

This strategy can be regarded as a particular type of bottom-up strategy. It begins with the identification of only a few important concepts and, based on these, the design proceeds, spreading outward 'radially'. That is, first the concepts nearest to the initial concepts are represented, and we then move towards those further away by means of 'navigation' through the specification.

[image: image28.png]

[image: image29.png]V7

An example of inside-out development of a conceptual schema is shown in Figure 6.8 with reference to an example seen in the previous chapter. In this diagram, the various areas indicate a possible chronological development of the schema.

Note that the entity EMPLOYEE was identified first, along with its attributes. On this basis, the employee participation in projects was then represented, together with the properties of the projects. Following this, the correlation between the employees and the company departments was analyzed identifying the relationships MANAGEMENT and MEMBERSHIP and the entity DEPARTMENT. Finally, based on this last entity, the branches of the company were represented (BRANCH entity with its attributes) together with the fact that the various departments belong to the branches (COMPOSITION relationship).

This strategy has the advantage of not requiring integration steps. On the other hand, from time to time, it is necessary to examine all of the specification looking for concepts not yet represented and to describe these new concepts in detail.

6.3.4 Mixed strategy

As is often the case, it turns out that each of the strategies has both positive and negative aspects. Therefore, we can devise a mixed strategy that tries to combine the advantages of top-down strategy with those of bottom-up and inside-out. The designer decomposes the requirements into a number of components, as in the bottom-up strategy, but not to the extent where all the concepts are separated. At the same time he or she defines a skeleton schema containing, at the abstract level, the principal concepts of the application. This skeleton schema gives a unified, although synthetic, view of the whole design and favors the integration of the schemas developed separately.

[image: image30.png]) T

[image: image31.png]

For example in Figure 6.9, we show a possible skeleton schema for our training company application. From a simple inspection of the requirements in Figure 6.3, we can immediately identify three principal concepts that can be represented by entities: the trainees, the courses and the instructors. There are relationships between these entities that we can assume to be descriptions of the attendance of the trainees to the editions of courses and of the teaching activities undertaken by the instructors of the courses. At this point we can move on, examining separately these main concepts and can proceed with gradual refinements (thus following the top-down strategy) or extending the various components of the schema with concepts that are not yet represented (thus following the bottom-up strategy).

The mixed strategy is probably the most flexible of those we have seen, because it lends itself well to contrasting requirements: that of subdividing a complex problem into smaller ones and that of proceeding by gradual refinement. In fact, this strategy also encompasses the inside-out strategy, which as we have seen, is only a variation of the bottom-up strategy. It is actually quite natural, during the bottom-up development of a sub​component of the project, to proceed from the inside out in order to represent the parts of the specification of the database that are not yet represented. It must also be stated that, in almost all practical cases, the mixed strategy is the only one that can actually be adopted. In fact, it is often necessary to begin the design before all the data requirements are available and of the data that is known, our knowledge of detail can vary.
6.4 Quality of a conceptual schema

A 'good’ conceptual schema should possess a number of properties, which can be used to verify the quality of the schema itself. Let us analyze the most important of these properties, and see how we can check them during the conceptual design stage.

Correctness A conceptual schema is correct when it uses properly the constructs made available by the conceptual model. As with programming languages, the errors can be syntactic or semantic. The first relates to illegal use of a construct, as for example, in specifying a generalization between relationships rather than between entities. The second relates to the use of a construct that does not follow its definition; for example, the use of a relationship to describe the fact that an entity is a specialization of another. The correctness of a schema can be verified by inspection, comparing the concepts present in the schema with the requirements and with the definitions of the constructs of the conceptual model used.

Completeness A conceptual schema is complete when it includes concepts that represent all the data requirements and allow for the execution of all the operations included in the operational requirements. The completeness of a schema can be verified by checking that all the requirements on the data are represented by some concept present in the schema, and that all the concepts involved in an operation can be reached by 'navigating' across the schema.

Readability A conceptual schema is readable when it represents the requirements in a way that is natural and easy to understand. Therefore, the schema must be self-explanatory, for example, by choosing suitable names for concepts. Readability also depends on purely aesthetic criteria: the comprehension of a schema is made easier if we draw it with consistent dimensions for its components. Some suggestions for making the schema more readable are as follows:

· arrange the constructs on a grid, choosing as central elements those that have roost links (relationships) with others;

· use only horizontal and vertical lines and try to keep intersections to a minimum;

· arrange parent entities above the respective child entities;

The readability of a schema can be verified by carrying out comprehension tests with the users.
Minimality A schema is minimal when all the specifications on the data are represented only once in the schema. A schema is therefore not minimal when there are redundancies, that is, concepts that can be derived from others. A typical source of redundancy in an E-R schema is the presence of cycles caused by the presence of relationships and/or generalizations. However, a redundancy is not always undesirable, but can be the result of precise design choices.
 In any case, these situations need always to be documented. The minimality of a schema can be verified by inspection checking whether there exist concepts that can be deleted from the schema without compromising its completeness.

In the next section we will see how the verification of the quality of a conceptual schema can be incorporated into a comprehensive method.

6.5 A comprehensive method for conceptual design

In this section, we will sum up all that we have said concerning conceptual database design. With regard to the design strategies we have seen, we should stress that in practice it is rare for a project to proceed always in a top-down or in a bottom-up manner. Independently of the chosen strategy, in reality there is always a need to modify the schema being constructed using both top-down transformations, which refine concepts already present and bottom-up transformations, which add concepts not already present. We will therefore show a method for conceptual design with reference to the mixed strategy, which, as we have said, includes the others as, special cases. The technique is made up of the following steps

1. Analysis of requirements

(a) Construct a glossary of terms.

(b) Analyze the requirements and eliminate any ambiguities.

(c) Arrange the requirements in groups

2. Basic step

(a) Identify the most relevant concepts and represent them in a skeleton schema.

3. Decomposition step (to be used if appropriate or necessary).

(a) Decompose the requirements with reference to the concepts present in the skeleton schema.

4. Iterative step: to be repeated for all the schemas until every specification is represented.

(a) Refine the concepts in the schema, based on the requirements.

(b) Add new concepts to the schema to describe any parts of the requirements not yet represented.

5. Integration step (to be carried out if step 3 has been used).

(a) Integrate the various sub-schemas into a general schema with reference to the skeleton schema.

6. Quality analysis

(a) Verify the correctness of the schema and carry out any necessary restructuring.

(b) Verify the completeness of the schema and carry out any necessary restructuring.

(c) Verify the minimality, list the redundancies and if necessary restructure the schema.

(d) Verify the readability of the schema and carry out any necessary restructuring.
Note that if Step 3 and Step 5 are omitted, and if in Step 4 only refinements are made, we have a pure top-down strategy. Conversely, if the basic step is not carried out and if in the iterative step only new concepts are added, we are using a pure bottom-up strategy. Finally, in the bottom-up transformations, we can proceed according to the inside-out strategy.

In the method shown, we have only briefly mentioned an important activity that accompanies every design phase: the documentation of the schemas. As we said in Section 5.3, this activity should also be suitably organized. Specifically, it is very useful to construct, in parallel to the development of a schema, a data dictionary that makes the interpretation of the various concepts easier. Furthermore, we can use business rules to describe the presence of redundancies or requirements of the application that we are not able to translate into constructs of the E-R model.

Finally, a few comments on the analysis of the quality of the design are needed. First, it must be stated that quality analysis should not be relegated to the end of the conceptual design: indeed this is a parallel activity, which should be carried out regularly during the development of a conceptual schema. Furthermore, it is very delicate, since it often requires restructuring to be carried out in order to remedy 'errors' made in previous phases. It is necessary to pay particular attention to concepts of the schema that have particular properties: for example, entities without attributes, groups of concepts that form cycles, over-complex generalization hierarchies or particularly tortuous portions of the schema. As we mentioned in Section 6.4, this analysis does not automatically mean the necessity for restructuring, but only a re-organization of the schema to make it more readable.

6.6 An example of conceptual design

Let us now look at a complete example of conceptual design, again with reference to our training company. We have already carried out the first stage of the method described above and we have shown a possible skeleton schema in Figure 6.9. With reference to this schema, we can, at this point, decide to analyze separately the specifications that relate to the trainees, the courses and the instructors, and to proceed inside-out for each of them.

We will now carry out the iterative step dealing first with the trainees. Of these, two types are immediately identifiable: the professionals and the employees. These entities can be represented as a specialization of the TRAINEE entity: the resulting generalization is total. At this point, the employers of the trainees need to be represented. This can be done by introducing the entity EMPLOYER, which is linked by a relationship to the entity EMPLOYEE. If we analyze the requirements, we notice that we need to represent two distinct concepts: past and present employment. We will decide therefore, to sub​divide this relationship into two relationships: PASTEMPLOYMENT and PRESENTEMPLOYMENT. The first has a start date and an end date and is linked to the entity TRAINEE (because the professionals, too, could have a past employment); the second has only a start date and is linked to the entity EMPLOYEE. By adding the attributes to entities and relationships, the cardinalities to the relationships and the identifiers to the entities, we obtain the schema in Figure 6 10 Observe that the entity TRAINEE has two identifiers, the internal code given by the company and the social security number. Note also that the attribute ProfessionalTitle is optional, in that the specification states that this information can be missing.

[image: image32.png]

For the instructors, we need to distinguish between those employed by the training company and those who work for the company on a freelance basis.

This can be done in a natural way with a total generalization of which INSTRUCTOR is the parent entity. We can then add the attributes Surname, Age, TownOfBirth, and Phone to the INSTRUCTOR entity. The last attribute is multi​-valued because an instructor can have more than one telephone number and we wish to represent them all. Note that the available attributes provide no natural identifier for the INSTRUCTOR. Here, we can decide to use the social security number of the instructor, even if this information is not in the requirements. As an alternative, we could have introduced an internal code, used only for this purpose. The resulting subschema is shown in Figure 6.11.

Let us move on to the analysis of the COURSE entity. First there are two distinct concepts that are linked: the abstract concept of course (which has a name and a code) and the edition of a course (which has a start date, an end date, and a number of trainees). We will represent these two concepts with distinct entities linked by the relationship TYPE. The classes of the course are then considered, which we can describe by an entity linked to the editions of the courses by a relationship COMPOSITION. We can then add the attributes, the cardinalities and the identifiers. With regard to classes, we assume that a class is identified by the classroom, the time and the date (it is not possible to have two different classes with the same day, classroom and time). For the editions of the course, on the other hand, we assume that two different editions of the same course cannot begin on the same day and thus an identifier for the COURSEEDITION is made up of the attribute StartDate and of the entity COURSE. The resulting subschema Is shown in Figure 6. 12.

The final schema is obtained by the integration of the schemas obtained up to this point. We will begin with the schemas relating to the instructors and to the courses represented in Figure 6.11 and in Figure 6.12 a respectively. In the skeleton schema, this link is represented by the TEACHING relationship. This needs to be refined: from the analysis of the requirements, it is not difficult to identify three types of different links between instructors and courses: the current teaching, the past teaching and the qualification to teach a course. We will represent these links by means of three relationships: the first two relate the entities INSTRUCTOR and COURSEEDITION (because an instructor teaches or has taught a specific edition of a course) while the third relates the INSTRUCTOR entity and the COURSE entity (because an instructor is qualified to teach a course in general) The schema obtained has now to be integrated with the portion relating to the trainees, shown in Figure 6.10. Looking at the skeleton schema we see that, in order to do this, we must first clarify the relationship that links courses and trainees. We can identify two cases: the current attendances and the past ones. Therefore we define two relationships between entity TRAINEE and the entity COURSEEDITION. For past attendances we are interested in the final marks. These are represented by an attribute of the corresponding relationship. By adding the various cardinalities, we obtain the final schema shown in Figure 6.13.

Note that we have worked in this case by decomposing and then integrating. However, given that we are dealing with a relatively simple schema, we could also have worked directly on the skeleton schema gradually refining it without integration steps.

At this point, we have to verify the properties of the schema thus obtained. In particular, the completeness is verified by going back over all the requirements and checking that all the data is represented and that the operations can be carried out. To give an example, consider operation 7, which asks for the trainees of all the courses taught by an instructor. The data needed for this operation can be retrieved using the schema in Figure 6.13 as follows: we start from the INSTRUCTOR entity, we then traverse the relationships CURRENTTEACHING and PASTTEACHING, the entity COURSEEDITION, and the relationships CURRENTATTENDANCE and PASTATTENDANCE, and we finally reach the entity TRAINEE. With regard to minimality we note that there is a redundancy in the schema: the attribute NumberOfParticipants in the entity COURSEEDITION can be derived, for each edition, by counting the number of instances of the trainee entity that are linked to this edition. We will postpone the discussion of whether to eliminate or maintain such a redundancy until the next design phase, where we deal with logical design.

Finally, we must remember that the schema must have appropriate documentation. It is particularly important to describe possible constraints not expressed directly by the schema, possibly in the form of business rules. For example, the fact that an instructor teaches (or may have taught) a course only if he or she is qualified to do so.

6.7 CASE tools for database design

Database design is a complex activity that is often difficult or impossible to carry out manually. The process can be made easier by using general-purpose editing programs with graphical interfaces for creating tables and diagrams. There are, however, software packages expressly designed for the creation and development of databases. These systems belong to the class of CASE (Computer Aided Software Engineering) tools and provide support for the main phases of the development of a database (conceptual, logical and physical design).

The functionalities vary widely from one package to another, but there are some basic features that are present in a more or less extensive form in all systems:

· a graphical interface with which it is possible to manipulate E R schemas diagrammatically;
· a data dictionary, which stores, information on the various components of the schema (entities, attributes, relationships, integrity constraints, etc.);

· a series of integrated tools, which carry out either automatically or through interaction with the user specific design tasks (automatic layout of diagrams, verification of correctness and completeness, quality .analysis of a schema, automatic production of DDL code for the creation of a database. etc.).

Many systems are integrated directly with database management systems. Other systems also provide support for requirements analysis. Still others provide libraries of predefined generic projects that can be used as a starting point for a new project.

With specific regard to conceptual design, it is generally possible to follow the strategies suggested in the sections above, even when these systems are used. Many of them make it possible to use a top-down strategy, allowing the partial specification of concepts of the schema and the gradual refinement of them. For example, we can define an entity without specifying attributes or identifiers. There are still other systems that allow views over a schema to be defined and manipulated separately, automatically propagating to the schema modifications made on the view, thus proceeding in a bottom-up manner.

Figure 6.14 shows a conceptual schema managed by one of the must popular tools, ER-win.

Note that the notation used to describe the constructs of the E-R model is different from that used in this chapter. In particular the attributes are directly represented within the entity, separating the identifiers from the other attributes. The lines represent relationships and particular symbols on the lines are used to express cardinality constraints. Generalizations are represented by lines separated by a special symbol (relationship between EMPLOYEE and MANAGER). This representation does not allow the specification of attributes for relationships.

This example shows a well-known problem that must be confronted when using a CASE tool for database design: there are standardizations neither of the notations used, nor of the conceptual model, and each system substantially adopts a specific version of the E-R model. There are, for example, systems that manage generalizations of only a certain type, others that do not manage them at all, still others that manage only binary relationships. Furthermore, in practice, all the products use different notations to represent the same constructs. Thus, considerable effort is often required on the part of the designer to adapt his or her own personal knowledge of models and techniques to the characteristics of the chosen product.

6.8 Bibliography

Conceptual data design is dealt with in detail in the books by Batini, Ceri and Navathe [7] and by Teorey [84]. Batini. Ceri and Navathe also discuss the problem of the integration of schemas. We also mention two interesting texts reporting on the DATAID project, which has developed many aspects of database design, by Albano, De Antonellis and Di Leva [2] and Ceri [14]. Our description of the activities of collection and analysis of requirements is based on the results of this project.

An in-depth review written by David Reiner on CASE tools for database design is given in Chapter 15 of Batini. Ceri and Navathe [7].

6.9 Exercises

Exercise 6.1 We wish to automate the management of loans in a library. The specification of the application, acquired through an interview with the librarian, is shown in Figure 6.15. Analyze the specifications, filter the ambiguities and then group them according to type. Pay particular attention to the difference between the concept of book and copy of book
	The Library

	A reader who uses the library has an identity card on which is written his or her code, name and address. The user makes requests for the loan of books catalogued in the library. Each book has a title and a list of authors and there can be many copies of any book. Each book in the library is identified by a code. Following a request the archive of available books is first consulted (that is. those not out on loan at present). If the book is available, we look for the book on the shelves. Once the book is found it is given to the reader. The text is then classified as one on loan. When the reader has finished, the book is returned, put back on the shelves and re-classified as available. For each loan the times and dates of taking out and returning are recorded.

Figure 6.15, The library specification for Exercise 6.1.

Identify the logical links between the various groups of specifications thus obtained.
Exercise 6.2 Represent the specifications of the previous exercise using an E-R model schema.

Exercise 6.3 Define an Entity-Relationship schema that describes the data of an application relating to a chain of automobile workshops. We are interested in:
· the workshops, with name (identifying), address and telephone number;

· the automobiles, with registration number (identifying), and model (a string of characters with no further structure) and owner;

· the customers (automobile owners), with social security number, surname, first name and telephone; each client can be the owner of more than one automobile;

· the maintenance work carried out in a workshop, with a number (unique in a particular workshop), start date and end date, parts replaced (with quantities) and number of hours labor;

· the spare parts available with code, name and unit cost.

Show the cardinalities of the relationships and (at least) one identifier for each entity

Exercise 6.4 Define an E-R schema that describes the data of an application relating to the electoral roll of the city of WhoKnowsWhere, with citizens and families. The following are stored:

· information on the citizens born in the area and on those resident in the area, each citizen is identified by a social security number, and has surname, first name, sex and date of birth; furthermore:

· for anyone born in the area. the birth registration number is also stored;

· for anyone born in another area, the city and state of birth are stored.

· information on resident families. each of which has one and one only head of the family and zero or more other members; for each of them, the relationship to the head of the family is recorded (spouse, child, parent or other); each resident citizen belongs to one and one family only; all the members of a family have the same residence (street, street number, apartment number).

Try to use the inside-out strategy. At the end, verify the quality of the schema obtained.

Exercise 6.5 Analyze the specifications relating to matches of a soccer tournament shown in Figure 6.16 and construct a glossary of terms.

	Soccer Tournament

	For each match, we store the series and the day on which it takes place, which match it is (e.g. first match, second match etc.) the date with day, month, year, the teams involved in the match with the name of the city for the team and the trainer, and finally for each team whether played at home. We store the name and the surname of each player in each team with his dale of birth and main position. We store, for each day, how many points each team has and we also store, for each match, the players of each team who played and in which position each player played (the positions can change from one game to another). For each match, we store the referee, with first name, surname, city and region of birth. The matches played as scheduled must be distinguished from those postponed. For a postponed match, we store the date in which it is actually played. We also identify the matches played in a city other than that of the home team: for each of these, we store the city in which it took place, as well as the reason for the variation of venue. For each player, we are interested in the city of birth.

Figure 6.16 Specifications for Exercise 6.5.

Exercise 6.6 Having organized the specifications of Exercise 6.5 into groups of similar type show them using an Entity Relationship model, using a top-down strategy starting from an initial skeleton schema. Note that the schema in Figure 5.26 represents a possible solution to this exercise.

Exercise 6.7 Try to represent again the specifications in Figure 6.16 with an Entity Relationship schema using a bottom-up strategy this time. Construct separate fragments of the schema that describe the various homogenous components of the specification and then proceed with the integration of the various schemas. Compare the result with the schema obtained from Exercise 6.6.

Exercise 6.8 We wish to carry out a reverse engineering operation. That is, given a relational database, we wish to construct its conceptual representation using the E-R model. The database is for an application concerning trains and railway stations and is made up of the following relations:

· STATION(Code, Name, City) with a referential constraint between the attribute City and the CITY relation;

· ClTY(Code, Name,. Region);
· ROUTE(From, To, Distance), with referential constraints between the attributes From and the relation STATION and between the attribute To and the relation STATION; this relation contains all and only the pairs of stations connected directly by a route (that is without intermediate stations);

· TRAlNTIMETABLE (Number, From, To, DepartureTime, ArrivaITime) with referential constraints between the attributes From and the relation STATION and between the attribute To and the relation STATION;
· TRAINROUTE (TrainNumber, From, To) with referential constraints between the attribute TrainNumber and the relation TRAINTIMETABLE and between the attributes From and To and the relation STATION;
· STOPTlME (TrainNumber. Station,. Arrival, Departure) with referential constraints between the attribute TrainNumber and the relation TRAlNTlMETABLE and between the attribute Station and the relation STATION;
· ACTUALTRAIN (TrainNumber, Date, DepartureTime, ArrivaITime) with a referential constraint between the attribute TrainNumber and the TRAINTIMETABLE relation;

· ACTUALSTOP (TrainNumber, Date, Station, Arrival, Departure) with 4 referential constraint between the two attributes TralnNumber and Station and the STOPTIME relation.

Indicate possible redundancies.

Exercise 6.9 Define an E-R schema that describes the data of an application for a hospital ward. We are intersted in:

· each patient, with social security number, first name, surname and date of birth;

· the admission of each patient, with admission date (an identifier for each admission of a patient) and the doctor in charge of the case; as well as, for a discharge, the date of discharge and the reason (cure, transfer, etc.), and, for a patient in the ward at present, the contact number of a relative (which we can assume is simply a string);

· each doctor, with registration number, surname, first name. specialization and graduation date;

· each examination, with the date. time, doctors present, medicines prescribed (with dosages) and the illnesses diagnosed each examination is identified by the patient involved and by the date and time;

· for each medicine, the identification code, the name and cost;

· for each illness, an identifying code, a name and a description.

Exercise 6.10 Define an Entity-Relationship schema that describes the data for an application for the management of apartment blocks, according to the

· each apartment block has a name (which identifies it) and an address, and has one or more buildings, each of which contains a number of apartments;

· if the apartment block has more than one building, each of them has a code (e.g. building A') which identifies it together with the name of the block;

· each apartment is identified, in its respective block, by the building (if many exist) and by a number (the apartment number) and has a rental charge;

· each apartment has an owner and a tenant; for both of them we are interested in the name, surname, social security number; for the owners we want to store also their addresses and telephone numbers; each person can be the owner of many apartments but can be the tenant of one apartment only.

Figure 6.4 The top-down яtrategy

Figure 6.6 The bottom-up strategy

Figure 6.8 An example of the inside-out strategy.

Figure 6.9 Skeleton schema for the training company

Figure 6.10 The refinement of a portion of the skeleton schema

Figure 6. 11 The refinement of another portion of the skeleton schema

Figure 6.12 The refinement of another portion of the skeleton schema.

Figure 6. 13 The final E-R schema for the training company.

Figure 6.14 Conceptual design using a case tool.

� . We will discuss this point further when we deal with logical design.

6.1

