Chapter 7
Logical Design

Logical design[image: image9.png]

The aim of logical design is to construct a logical schema that correctly and efficiently represents all of the information described by an Entity-Relationship schema produced during the conceptual design phase. This is not just a simple translation from one model to another for two reasons. First, there is not a close correspondence between the models involved because not all the constructs of the Entity-Relationship model can be translated naturally into the relational model. For example, while an entity can easily be represented by a relation, there are various options for the generalizations. Secondly, the aim of conceptual design is to represent the data accurately and naturally from a high-level, computer-independent point of view. Logical design is instead the basis for the actual implementation of the application, and must take into account, as far as possible, the performance of the final product. The schema must therefore be restructured in such a way as to make the execution of the projected operations as efficient as possible. In sum, we must plan a task that is not only a translation (from the conceptual model to the logical) but also a reorganization. Since the reorganization can for the most part be dealt with independently of the logical model, it is usually helpful to divide the logical design into two steps, as shown in Figure 7 1
· Restructuring of the Entity-Relationship schema It is independent of the chosen logical model and is based on criteria for the optimization of the schema and the simplification of the following step.
· Translation into the logical model It refers to a specific logical model (in our case. the relational model) and can include a further optimization, based on the features of the logical model itself.

[image: image10.png]

[image: image11.png]nu@ﬂ.u

The input for the first step is the conceptual schema produced in the preceding phase and the estimated database load, in terms of the amount of data and the operational requirements. The result obtained is a restructured E-R schema, which is no longer a conceptual schema in the strict sense of the term, In that it constitutes a representation of the data that takes into account implementation aspects.

This schema and the chosen logical model constitute the input of the second step, which produces the logical schema of our database. In this step, we can also carry out quality controls on the schema and, possibly, further optimizations based on the characteristics of the logical model. An analysis technique used for the relational model (called normalization) will be presented separately in the next chapter. The final logical schema, the integrity constraints defined on it and the relevant documentation, constitute the final product of logical design.

In the remainder of this chapter, we will present the two steps that make up the logical design of a database. We will first discuss the techniques that can be used to analyze the efficiency of a database by referring to its conceptual schema.

7.1 Performance analysis on E-R schemas
An E-R schema can be modified to optimize some performance indicators. We use the term indicator, because the efficiency of a database cannot be precisely evaluated with reference to a conceptual schema. The reason is that the actual behaviour is also dependent on physical aspects that are not pertinent to a conceptual representation. It is possible, however, to carry out evaluations of the two parameters that influence the performance of any software system. These are:

· cost of an operation: this is evaluated in terms of the number of occurrences of entities and relationships that are visited to execute an operation on the database; this is a coarse measure and it will sometimes be necessary to refer to more detailed criteria;
· storage requirement: this is evaluated in terms of number of bytes necessary to store the data described by the schema.

In order to study these parameters, we need the following information.

· Volume of data. That is
· number of occurrences of each entity and relationship of the schema;

· size of each attribute.

· Operation characteristics. That is:

· type of operation (interactive or batch);

· frequency (average number of executions in a certain time span);

· data involved (entities and/or relationships)

[image: image12.png](120 Phone

"SOName

[image: image13.png]Restructuring of the E-R schema

To give a practical example, we will look at an already familiar schema, which is shown again for convenience, in Figure 7.2.
Typical operations for this schema can be:

· operation 1: assign an employee to a project;

· operation 2: find the data for an employee, for the department in which he or she works and for the projects in which he or she is involved;

· operation 3: find the data for all the employees of a certain department;

· operation 4: for each branch, find its departments with the surnames of the managers and the list of the employees in each department

Although the operations above might look oversimplifying with respect to the actual database load, we can note that database operations follow the so-called 'eighty -twenty rule'. This rule states that eighty percent of the load is generated by twenty percent of the operations. This fact allows us to concentrate only on some operations and still give an adequate indication of the workloads for the subsequent analysis.

[image: image14.png]

The volume of data and the general characteristics of the operations can be described by using tables such as those in Figure 7.3. In the table of volumes all the concepts of the schema are shown (entities and relationships) with their estimated volumes. In the table of operations we show, for each operation, the expected frequency and a symbol that indicates whether the operation is interactive (I) or batch (B). Note that, in the volumes table, the number of occurrences of a relationship depends on two parameters. These are (i) the volume of the entities involved in the relationship and (ii) the number of times an occurrence of these entities participates on average in an occurrence of the relationship. The latter depends in turn on the cardinalities of the relationship. For example, the number of occurrences of the COMPOSITION relationship is equal to the number of departments, since the cardinalities dictate that each department belongs to one and only one branch. On the other hand, the number of occurrences of the relationship MEMBERSHIP is little less than the number of employees, since few employees belong to no department. Finally, if an employee is involved on average in three projects, we have 2000 x 3 = 6000 occurrences for the relationship PARTICIPATION (and thus 6000 (500 = 12 employees on average for each project)
[image: image15.png]

[image: image16.png]

For each operation we can, moreover, describe the data involved by means of a navigation schema that consists of the fragment of the E-R schema relevant to the operation. On this schema, it is useful to draw the "logical path' that must be followed to access the required information. An example of a navigation schema is proposed in Figure 7.4 with reference to operation 2. To obtain the required information, we begin with the EMPLOYEE entity and we gain access to his department by means of the MEMBERSHIP relationship, and to the projects in which he is involved by means of the PARTICIPATION relationship.

Once this information is available, we can estimate the cost of an operation on the database by counting the number of accesses to occurrences of entities and relationships necessary to carry out the operation. Look again at operation 2. According to the navigation schema, we must first access an occurrence of the EMPLOYEE entity in order then to access an occurrence of the MEMBERSHIP relationship and, by this means, to an occurrence of the DEPARTMENT entity. Following this, to obtain the data of the projects on which he or she is working, we must access on average three occurrences of the PARTICIPATION relationship (because we have said that on average an employee works on three projects). Then, through this, we access on average three occurrences of the PROJECT entity. All this can be summed up in a table of accesses such as that shown in Figure 7.5. In the last column of this table, the type of access is shown: R for read access, and W for write access. It is necessary to make this distinction because, as we shall see in Chapter 9. write operations are generally more onerous than read ones.

[image: image17.png]Invorce

—OTax

In the next section, we will see how these simple analysis tools can be used to make decisions during the restructuring of E-R schemas.

7.2 Restructuring of E-R schemas
The restructuring step of an E-R schema can be sub-divided into a series of tasks to be carried out in sequence (see Figure 7.6).
· Analysis of redundancies decides whether to delete or retain possible redundancies present in the schema.

· Removing generalizations replaces all the generalizations in the schema by other constructs.

· Partitioning and merging of entities and relationships decides whether is it convenient to partition concepts in the schema into more than one concept or to merge several separate concepts into a single one.

· Selection of primary identifiers chooses an identifier for those entities that have more than one.

Later in the section, we will examine separately the various restructuring tasks using practical examples.
[image: image18.png]Eq

o

E;

<o

[image: image19.png]e

3\‘\ FP.

7.2.1 Analysis of redundancies
A redundancy in a conceptual schema corresponds to a piece of information that can be derived (that is. obtained by a series of retrieval operations) from other data. An Entity-Relationship schema can contain various forms of redundancy. The most frequent examples are as follows.

· Attributes whose value can be derived, for each occurrence of an entity (or a relationship), from values of other attributes of the same occurrence. For example, the first schema in Figure 7.7 consists of an entity INVOICE in which one of the attributes can be deduced from the others by means of arithmetic operations.

· Attributes that can be derived from attributes of other entities (or relationships), usually by means of aggregate functions. An example of such a redundancy is present in the second schema in Figure 7.7. In this schema, the attribute TotalAmount of the PURCHASE entity is a derived one. It can be computed from the values of the attribute Price of the PRODUCT entity, by summing the prices of the products of which a purchase is made up, as specified by the COMPOSITION relationship.

· Attributes that can be derived from operations of counting occurrences. For example, in the third schema in Figure 7.7, the attribute NumberOfInhabitants of a town can be derived by counting the occurrences of the relationship RESIDENCE in which the town participates. This is actually a variant of the previous example, which is discussed separately, as it occurs frequently.
· [image: image20.png]T
ﬁ 3 _M<>_

[image: image21.png]

[image: image22.png]E;

Eq

E;

fma] Fgh

[image: image23.png]Address O—— EMPLOYEE |—O Salary
DateOBirth O Tax

PersonaL | (1) B over (-] EMPLOYMENT
BrenO) Data |
DateORirth O

fet

[image: image24.png]TeLeprONE

Name
AGENCY L.O
s

('-"(IN) B Name
AGENCY O Addresss
NAe

 Relationships that can be derived from other relationships in the presence of cycles. The last schema in Figure 7.7 contains an example of this type of redundancy: the TEACHING relationship between students and lecturers can be derived from the relationships ATTENDANCE and ASSIGNMENT. It must be clearly stated that the presence of cycles does not necessarily generate redundancies. If, for example, instead of the TEACHING relationship, this schema had contained a relationship SUPERVISION representing the link between students and supervisors then the schema would not have been redundant.

The presence of a derived piece of information in a database presents an advantage and some disadvantages. The advantage is a reduction in the number of accesses necessary to obtain the derived Information. The disadvantages are a larger storage requirement (which is, however, a negligible cost) and the necessity for carrying out additional operations in order to keep the derived data up to date. The decision to maintain or delete a redundancy is made by comparing the cost of operations that involve the redundant information and the storage needed, in the case of presence or absence of redundancy.

Using a practical example, let us look at how the evaluation tools described above can be used to make a decision of this type. Consider the schema about people and towns in Figure 7.7 and imagine that it refers to a regional electoral roll application for which the following main operations are defined:

· operation 1 add a new person with the person's town of residence.

· operation 2: print all the data of a town (Including the number of inhabitants).

[image: image25.png]Name O._,

(L)

AddresO—{ PERSON

SSN
Name O

Address O—

A

1.
(1) APARTMENT
AptAddress

O

Let us suppose, moreover, that for this application the load is that shown in Figure 7.8.
[image: image26.png]Team

(LN)
Dateleft

)

(ILN)

e &
Position O

_@hame

SO Town

Team

Present S (ON)

©.n

PLarer

Name®._

Postion O

Let us first try to evaluate the indicators of performance in the case of presence of redundancy (attribute Number0flnhabitants in the TOWN entity)
Assume that the number of inhabitants of a town requires four bytes. We can see that the redundant data requires 4 x 200 = 800 bytes, that is, less than one Kbyte of additional storage. Let us now move on to estimating the cost of the operations. As described in the access tables in Figure 7.9, operation 1 requires the following: A write access to the PERSON entity (to add a new person), a write access to the RESIDENCE relationship (to add a new person-town pair) and finally a read access (to find the relevant town) and another write access to the town entity (to update the number of inhabitants of that occurrence). This is all repeated 500 times per day, for a total of 1500 write accesses and 500 read accesses. The cost of operation 2 is almost negligible, as it requires a single read access to the town entity to be repeated twice a day. Supposing a write access to cost twice as much as a read access, we have a total of 3500 accesses a day when there is redundant data.

Let us now consider what happens when there is no redundant data.

For operation 1 we need a write access to the PERSON entity and a write access to the RESIDENCE relationship for a total of 1000 write accesses per day. (There is no need to access the TOWN entity since there is no derived information). For operation 2 however, we need a read access to the TOWN entity (to obtain the data for the town), which we can neglect, and 5000 read accesses to the RESIDENCE relationship on average, (obtained by dividing the number of people by the number of towns) to calculate the number of inhabitants of this town. This gives a total of 10000 read accesses per day. Counting twice the write accesses, we have a total of 12000 accesses per day when there is no redundant data. Thus, approximately 8500 accesses more per day are required where there is no redundant data in order to save a mere Kbyte. This depends on the fact that the read accesses needed to compute the derived data are much more than the write accesses needed to keep the derived data up to date.
It is obvious that, in this case, it worth maintaining the redundant data.
7.2.2 Removing generalizations
The relational model does not allow the direct representation of generalizations of the E-R model. We need, therefore, to transform these constructs into other constructs that are easier to translate. As we shall see later in Section 7.4.2, the E-R constructs for which the translation into the relational model is easy are entities and relationships.

[image: image27.png]

[image: image28.png]“ocoi

2

To represent a generalization using entities and relationships there are essentially three possible options. We will demonstrate these by referring to the generic E-R schema in Figure 7. 10.
The possible outcomes are shown in Figure 7.11 and are obtained by means of the following restructurings.

1. [image: image29.png]SupplieiD@._

[image: image30.png]el Yo

_ @ Name
0O Town

[image: image31.png]STUDENT

10 Town

[image: image32.png]

Collapse the child entities into the parent entity. The entities E1 and E2 are deleted and their properties are added to the parent entity E0. To this entity, a further attribute Atype is added, which serves to distinguish the 'type' (E1 or E2) of an occurrence of E0. For example, a generalization between the parent entity PERSON and the child entities MAN and WOMAN can be collapsed into the entity PERSON by adding to it the attribute Sex. Note that the attributes A11 and A21 can assume null values (because they are inapplicable) for some occurrences of E0. In addition, the relationship R2 will have a minimum cardinality equal to zero for the E0 entity (because the occurrences of E2 are only a subset of the occurrences of E0)

2. Collapse the parent entity into the child entities. The parent entity E0 is deleted and, for the property of inheritance, its attributes, its identifier and the relationships to which this entity was involved, are added to both the child entities E1 and E2. The relationships R11 and R12 represent respectively the restriction of the relationship R1 on the occurrences of the entities E1 and E2. Consider, for example, a generalization between the entities PERSON, having Surname and Age as attributes and SSN (Social Security Number) as an identifier, and the entities MAN and WOMAN. If this is restructured in this way, then the attributes Surname and Age and the identifier SSN are added to both the entities MAN and WOMAN.
3. Substitution of the generalization with relationships. The generalization is transformed into two one-to-one relationships that link the parent entity with the child entities E1 and E2. There are no transfers of attributes or relationship and the entities E1 and E2 are identified externally by the entity E0. Additional constraints hold in the new schema: each occurrence of E0 cannot participate in both RG1 and RG2 moreover, if the generalization is complete, each occurrence of E0 must participate in exactly one of RG1 and RG2.

The choice among the various options can be made in a manner similar to that used for derived data. That is, by considering the advantages and disadvantages of each of the possible choices in terms of storage needed and cost of the operations involved. We can, however, establish some general rules.

· Option 1 is convenient when the operations involve the occurrences and the attributes of E0, E1 and E2 more or less in the same way. In this case, even if we waste storage for the presence of null values, the choice assures fewer accesses compared to the others in which the occurrences and the attributes are distributed among the various entities.

· Option 2 is possible only if the generalization is total, otherwise the occurrences of E0 that are not occurrences of neither E1 nor E2 would not be represented. It is useful when there are operations that refer only to occurrences of E1 or of E2, and so they make distinctions between these entities. In this case, storage is saved compared to Option 1, because, in principle, the attributes never assume null values. Further, there is a reduction of accesses compared to Option 3, because it is not necessary to visit E0 in order to access some attributes of E1 and E2.

· Option 3 is useful when the generalization is not total and the operations total to either occurrences and attributes of E1 (E2) or of E0, and therefore make distinctions between child and parent entities. In this case, we can save storage compared to Option 1 because of the absence of null values, but there is an increase of the number of accesses to keep the occurrences consistent.

There is an important aspect that must be clarified about the above. For the restructuring of the generalizations, the simple counting of instances and accesses is not always sufficient for choosing the best possible option. Given these factors, it would seem that Option 3 would hardly ever be suitable, as it usually requires more accesses in order to carry out operations on the data. This restructuring, however, has the great advantage of generating entities with fewer attributes. As we shall see, this translates into logical and then physical structures of small dimensions for which a physical access allows the retrieval of a greater amount of data (tuples) at once. Therefore, in some critical cases, a more refined analysis needs to be carried out. This might take into account other factors, such as the quantity of data that can be retrieved by means of a single access to secondary storage. These aspects will be discussed in more detail in Chapter 9.
[image: image33.png]SOBranch

[image: image34.png]Alie—

on

N

N

ASLAS:

[T0) ©n

2
o) oN) vy
ES o E6 A8
-oAs)
O AN\ 08
N oms
@Adl
E4 [~OA42

The options presented are not the only ones allowed, but it is possible to carry out restructurings that combine them. An example is given in Figure 7.12, which consists in another possible transformation of the schema given in Figure 7.10. In this case, based on considerations similar to those discussed above, it was decided to incorporate E0 and E1 and to leave the entity e2 separate from the others. The attribute Atype, was added to distinguish the occurrences of E0 from those of E1.
Finally, regarding generalizations on more than one level, we can proceed in a similar way, analyzing a generalization at a time, starting from the bottom of the entire hierarchy. Based on the above, various configurations are possible, which can be obtained by combining the basic restructurings on the various levels of the hierarchy
7.2.3 Partitioning and merging of entities and relationships
Entities and relationships of an E-R schema can be partitioned or merged to improve the efficiency of operations, using the following principle. Accesses are reduced by separating attributes of the same concept that are accessed by different operations and by merging attributes of different concepts that are accessed by the same operations. The same criteria as those discussed for redundancies are valid in making a decision about this type of restructuring.

Partitioning of entities An example of entity partitioning is shown in Figure 7.13: the EMPLOYEE entity is substituted by two entities, linked by a one-to-one relationship. One of them describes personal information of an employee. The other describes information about the employment of an employee. This restructuring is useful if the operations that frequently involve the original entity require, for an employee, either only information of a personal nature or only information relating to his or her employment.

[image: image35.png]EmpLOvEE

Number

Surname Salary

PARTICIPATION

{{Employes] [Project

StartDate

[image: image36.png]Surname DateOfBirth | Team | Salary Position

Tean

Name Town TeamColours

This is an example of vertical partitioning of an entity, in the sense that the concept is sub-divided according to its attributes. It is also possible, however, to carry out horizontal partitioning in which the sub-division works on the occurrences of entities. For example, there could be some operations that relate only to the analysts and others that operate only on the salespeople. In this case, too, it could be useful to partition the EMPLOYEE entity into two distinct entities, ANALYST and SALESPERSON having the same attributes as the original entity. Note that horizontal partitioning corresponds to the introduction of hierarchies at the logical level.

Horizontal partitioning has the side effect of having to duplicate the relationships in which the original entity participated. This phenomenon can have negative effects on the performance of the database. On the other hand, vertical partitioning generates entities with fewer attributes. They can therefore be translated into physical structures from which we can retrieve a great deal of data with a single access. Partitioning operations will be further discussed in Chapter 10, when dealing with the fragmentation of distributed databases.

Deletion ot multi-valued attributes One type of partitioning that should be discussed separately deals with the deletion of multi-valued attributes. This restructuring is necessary because, as with generalizations, the relational model does not allow the direct representation of these attributes.
[image: image37.png]AS| AS2 [A6IR3 A62R3| AR3 [A6IR4* A62R4"|[A6IRS" A62RS!| ARS

4
- ‘—‘] ﬁ;¢
All [ASI| A2 ASl A2 A2

"ll

A2l | Al ASI A2

I

4
A3l A2 A4l A92

[image: image38.png]

The restructuring required is quite simple and is illustrated in Figure 7.14.
[image: image39.png]i

Someme

L

[image: image40.png]ame VARCIARIGE

Coy vanoweaan |~
Asvore VARCHARIGED)
e

T —

WL TARLE Cnploges (
e ie

oopi_ta

N

Salary

e

PRIy Ky (Enp_14)

ATE TABLE Preject (
W

Busget
Seadiine
PRIWEY MLV (Name))i

ATE TWALE Cnplopee_Projeet ¢
14 o

e SaRcHMRI(T9) P WL,

PRINEY SEY (np 14, Wame))i

The AGENCY entity is separated into two entities: an entity having name and attributes as the original entity, apart from the multi-valued attribute Telephone, and a new TELEPHONE entity, with the attribute Number. These entities are linked by a one-to-many relationship. Obviously, if the attribute had also been optional, then the minimum cardinality for the AGENCY entity in the resulting schema would have been zero.

Merging of entities Merging is the reverse operation of partitioning. An example of merging of entitles is shown in Figure 7.15 in which the PERSON and APARTMENT entities, linked by a one-to-one relationship OWNER, are merged into a single entity having the attributes of both. This restructuring can be suggested by the tact that the most frequent operations on the PERSON entity always require data relating to the apartment that the person possesses. Thus, we wish to avoid the accesses necessary to retrieve this data by means of the OWNER relationship. A side-effect of this restructuring is the possible presence of null values because, according to the cardinalities, there are people who do not own apartments. Therefore, there are no values for them for the attributes AptAdress and AptNumber.
Merging is generally carried out on one-to-one relationships, rarely on one-to-many relationships and hardly ever on many-to-many relationships. This is because merging of entities linked by a one-to-many relationship or a many-to-many relationship generates redundancies. In particular, it is easy to verify that redundancies can appear in non-key attributes of the entity that participates in the original relationship with a maximum cardinality equal to N. We will come back to illustrate this point in Chapter 8.
[image: image41.png]

[image: image42.png]

Other types of partitioning and merging Partitioning and merging op​erations can also be applied to relationships. This can be done for two reasons. Firstly, in order to separate occurrences of a relationship that are always accessed separately. Secondly, to merge two (or more) relationships between the same entities into a single relationship, when their occurrences are always accessed together. An example of partitioning of relationship is given in Figure 7.16 in which the current players of a basketball team are distinguished from past players.

We should mention that the decisions about partitioning and merging can be postponed until the physical design phase. Many or todays database management systems allow the specification of clusters of logical structures. that is, grouping of tables, carried out at the physical level. Clusters allow rapid .access to data distributed throughout different logical structures
7.2.4 Selection of primary identifiers
The choice of an identifier for each entity is essential to the translation into the relational model, because of the major role keys play in a value-based data model, as we discussed in Chapter 2. Furthermore, database management systems require the specification of a primary key on which auxiliary structures for fast access to data, known as indices, are automatically constructed. Indices are discussed in more detail in Section 9.5.5. Thus, where there are entities for which many identifiers (or none) have been specified, it is necessary to decide which attributes constitute the primary identifier. The criteria for this decision are as follows.

· Attributes with null values cannot form primary identifiers These attributes do not guarantee access to all the occurrences of the corresponding entity, as we pointed out while discussing keys for the relational model.

· One or few attributes are preferable to many attributes. This ensures that the indices are of limited size, less storage is needed for the creation of logical links among the various relations, and join operations are facilitated.

· For the same reason, an internal identifier with few attributes is preferable to an external one. possibly involving many entities. This is because external identifiers are translated into keys comprising (he identifiers of the entities involved in the external identification. Thus. keys with many attributes would be generated.

· An identifier that is used by many operations to access the occurrences of an entity is preferable to others. In this way, these operations can be executed efficiently, since they can take advantage of the indices automatically built by the DBMS.

At this stage, if none of the candidate identifiers satisfies the above requirements, it is possible to introduce a further attribute to the entity. This attribute will hold special values (often called codes) generated solely for the purpose of identifying occurrences of the entity.

It is advisable to keep track of the identifiers that are not selected as primary but that are used by some operations for access to data. As we will discuss in Chapter 9, for these identifiers we can explicitly define efficient access structures, generally known as secondary indices. Secondary indices can be used to access data as an alternative to those generated automatically on the primary identifiers.

7.3 Translation into the relational model
The second step of logical design corresponds to a translation between different data models. Starting from an E-R schema, an equivalent relational schema is constructed. By equivalent, we mean a schema capable of representing the same information. According to the restructuring made on the E-R schema in the first step of logical design, it is sufficient to consider a simplified version of the E-R model. In this version, a schema contains no generalizations or multi-valued attributes and has only primary identifiers.

We will deal with the translation problem systematically, beginning with the fundamental case, that of entities linked by many-to-many relationships. This example demonstrates the general principle on which the whole translation technique is based.

7.3.1 Entities and many-to-many relationships

[image: image43.png]A0

A0

L -OAs

[image: image44.png]

Consider the schema in Figure 7.17.
Its natural translation into the relational model allows the following:
· for each entity, a relation with the same name, having as attributes the same attributes as the entity and having its identifier as key;

· for the relationship, a relation with the same name, having as attributes the attributes of the relationship and the identifiers of the entities involved; these identifiers, taken together, form the key of the relation.

If the original attributes of entities or relationships are optional, then the corresponding attributes of relations can assume null values. The relational schema obtained is thus as follows:

EMPLOYEE(Number, Surname, Salary)
PROJECT (Code, Name, Budget)
PARTICIPATION(Number, Code, StartDate)

To make the meaning of the schema clearer it is helpful to do some renaming. For example, in our case we can clarify the contents of the PARTICIPATION relation by defining it as follows:

PARTlClPATlON (Employee, Project, SartDate)

The domain of the Employee attribute is a set of employee numbers and that of the Project attribute is a set of project codes There are referential constraints between these attributes and the EMPLOYEE relation and the PROJECT relation respectively.
Renaming is essential in some cases. For example, when we have recursive relationships such as that in Figure 7.18.
This schema is translated into two relations:
PROOUCT (Code, Name, Cost)
COMPOSITION (Part, Subpart, Quantity)

In this schema, both the attributes Part and Subpart have product codes as domain. There is in fact a referential constraint between each of them and the PRODUCT relation.
The translation of a relationship involving more than two entities is similar to the translation of a binary relationship. For example, consider the schema with a ternary relationship in Figure 7.19.
This schema is translated into the following four relations:
SUPPLIER (SupplierlD, SupplierName)
PRODUCT (Code, Type)
DEPARTMENT (Name, Telephone)
SUPPLY (Supplier, Product, Department, Quantity)

There are referential constraints (or the schema thus obtained between the attributes Supplier, Product, and Department of the SUPPLY relation and respectively, the SUPPLIER relation, the PRODUCT relation and the DEPARTMENT relation.

In this last type of translation, we need to verify whether the identifiers of the entities, taken together, do not constitute a key but, instead, a redundant superkey for the relation that represents the relationship of the E-R schema. This can happen, for example, in the case of the schema in Figure 7.19, if there is a sole supplier who supplies a given product to a given department. Note that the cardinality is still valid, since this supplier can supply many products to this or other departments. In this case, the key to the SUPPLY relation would be made up of the attributes Product and Department only, because, given a product and a department, the supplier is unambiguously determined.
7.3.2 One-to-many relationships
Consider the schema with a one-to-many relationship in Figure 7.20.
According to the rule seen for many-to-many relationships, the translation of this schema would be as follows:
PLAYER (Surname, DateofBirth, Position)
TEAM (Name, Town, TeamColours)
CONTRACT (PtayerSurname, PlayerDateOfBirth, Team, Salary)

Note that in the CONTRACT relation, the key consists of only the identifier of PLAYER because the cardinalities of the relationship tell us that each player has a contract with a single team. At this point, the relations PLAYER and CONTRACT have the same key (the surname and the date of birth of a player) and we can therefore merge them in a single relation with no risk of redundancy. This is because there is a one-to-one correspondence between the respective instances. Thus, for the schema in Figure 7.20, the following translation is preferable, in which the PLAYER relation represents both the entity and the relationship of the original E-R schema:

PLAYER (Surname, DateofBirth, Position, Team, Salary)
TEAM (Name, Town, TeamColours)

In this schema, there is obviously the referential constraint between the attribute Team of the PLAYER relation and the TEAM relation.

Note that the participation of the PLAYER entity is mandatory. If it were optional (it is possible to have players who have no contract with a team), then both of the translations with three relations and with two relations would be valid. Even if in the second translation we have fewer relations, it is in fact possible to have null values in the PLAYER relation on the attributes Team and Salary. Conversely, in the first translation, this cannot happen.

We mentioned in Section 5.2.2, that n-ary relationships are usually many-to-many. However, when an entity participates with a maximum cardinality of one, we can save a relation, as happens with the translation of one-to-many binary relationships. The entity that participates in the relationship with maximum cardinality of one, is translated into a relation that includes the identifiers of the other entities involved in the relationship (as well as possible attributes of the relationship itself). There is, therefore, no longer any need to represent the original relationship with a separate relation. For example, assume that the PRODUCT entity participated in the relationship in Figure 7.19 with a minimum and maximum cardinality of one. This means that, for each product there is a sole supplier who supplies it and a sole department that is supplied. Then the schema is translated as follows.

SUPPLIER (SupplierID, SupplierName)
DEPARTMENT (Name, Telephone)
PRODUCT (Code, Type, Supplier, Department, Quantity)

Here there are referential constraints between the attribute Supplier of the PRODUCT relation and the SUPPLIER relation, and between the attribute Department of the PRODUCT relation and the DEPARTMENT relation.

7.3.3 Entities with external identifiers
Entities with external identifiers give rise to relations having keys that contain the identifier of the 'identifying' entities. Consider, for example, the E-R schema shown in Figure 7.21
The corresponding relational schema is as follows:
STUDENT (RegistrationNumber, University, Surname, EnrolmentYear)
UNIVERSITY (Name, Town, Address)

in which there is a referential constraint between the attribute University of the STUDENT relation and the UNIVERSITY relation.

As we can see, by representing the external identifier, we also represent the relationship between the two entities. Remember that entities identified externally always participate in the relationship with a minimum and maximum cardinality of one. This type of translation is valid independently of the cardinality with which the other entities participate in the relationship.

7.3.4 One-to-one relationships
For one-to-one relationships, there are generally many possibilities for translation. We will begin with one-to-one relationships with mandatory participation for both the entities, such as that in the schema in Figure 7.22.
There are two symmetrical and equally valid possibilities for this type of relationship:

HEAD (Number, Name, Salary, Department, StartDate)
 DEPARTMENT(Name, Telephone, Branch)

With the referential constraint between the attribute Department of the HEAD relation and the DEPARTMENT relation, or:

HEAD (Number, Name, Salary)
DEPARTMENT(Name, Telephone, Branch, Head, StartDate)

for which there is the referential constraint between the attribute Head of the DEPARTMENT relation and the HEAD relation.

Since there is a one-to-one correspondence between the occurrences of the two entities, a further option would seem possible in which we have a single relation containing all the attributes in the schema. This option should be discarded, however, because we must not forget that the schema that we are translating is the result of a process in which precise choices were made regarding the merging and the partitioning of entities. This means that, if the restructured E-R schema has two entities linked by a one-to-one relation, we found it convenient to keep the two concepts separate. It is therefore not appropriate to merge them during the translation into the relational model.

Let us now consider the case of a one-to-one relationship with optional participation for one of the entities, such as that in the schema in Figure 7.23.
In this case we have one preferable option:
EMPLOYEE (Number, Name, Salary)
DEPARTMENT (Name, Telephone, Branch, Head, StartDate)

for which there is the referential constraint between the attribute Head of the DEPARTMENT relation and the EMPLOYEE relation. This option is preferable to the one in which the relationship is represented in the EMPLOYEE relation through the name of the department managed, because, for this attribute, we could have null values.
Finally, consider the case in which both the entities have optional participation. For example, assume that, in the schema in Figure 7.33, there can be departments with no head (and thus the minimum cardinality of the DEPARTMENT entity is equal to zero). In this case. there is a further possibility that allows fur three separate relations:
EMPLOYEE (Number, Name, Salary)
DEPARTMENT (Name, Telephone, Branch)
MANAGEMENT (Head, Department, StartDate)

Note that the key of the MANAGEMENT relation could be the attribute Department as well. Here, we have referential constraints between the attributes Head and Department of the MANAGEMENT relation and the EMPLOYEE and DEPARTMENT relations, respectively.

This solution has an advantage of never having null values on the attributes that implement the relationship. On the other hand. we need an extra relation, with a consequent increase of the complexity of the database. Therefore, the three-relation solution is to be considered only if the number of occurrences of the relationship is very low compared to the occurrences of the entities involved in the relationship. In this case, there is the advantage of avoiding the presence of many null values.
7.3.5 Translation of a complex schema
To see how to proceed in a complex case, we will carry out a complete example of a translation based on the schema shown in Figure 7.24.
In the first phase, we translate each entity into a relation. The translation of the entities with internal identifiers is immediate:

E3(A31,A32)
E4(A41,A42))
E5(A51,A52)
E6(A61, A62, A63)

Now we translate the entities with external identifiers. We obtain the following relations:

E1 (A11, A51, A 12)
E2(A21,A11,A51,A22)

Note how E2 takes the attribute A11 and (transitively) the attribute A51, which, together with A21, identifies E1. Some referential constraints are defined for the relations produced (for example, there is a referential constraint between the attribute A51 of E1 and E5).

We now move on to the translation of relationships. Relationships R1 and R6 have already been translated because of the external identification of E2 and E1 respectively. We assume we have decided to obtain a minimum number of relations in the final schema and we will try therefore to merge relations where possible. We obtain the following modifications to be carried out on the initial relations:

· in order to translate R3, we introduce, with appropriate renaming, the attributes that identify E6, among those of E5, as well as the attribute AR3 of R3 Thus. we introduce A61R3. A62R3 and AR3 in E5;

· similarly for R4. we introduce A6 1R4 and A62R4 in E5;

· similarly for R5, we introduce A61R5, A62R5 and AR5 in E5.

Note that the renaming is indispensable in order to be able to distinguish between the uses of the same attributes to represent different relationships (for example. A61R3, which represents R3, and A61R4 which represents R4). Finally, we translate the only many-to-many relationship:
R2(A21, A11, A51, A31,A41,AR21,AR22)
The relational schema obtained is therefore as follows:
E1(A11,A51,.A12)
E2(A21,A11,A51,A22)
E3(A31, A32)
E4(A41,A42)
E5(A51, A52, A6R3, A62R3,AR3,A61R4, A62R4, A61R5, A62R5, AR5)
E6(A61,A62,A63)
R2(A21,A11, A51, A31,A41,AR21,AR22)

Let us note that we have obtained relations (E2 and R2) with keys composed of many attributes. In such cases one could decide to introduce simple keys (codes) either at this stage or earlier in the restructuring step as discussed in Section 7.2.4.
7.3.6 Summary tables
	Type
	Initial schema
	Possible translation

	Binary many-to-many relationship
	[image: image1.png]Agn
e
E

E;

	E1(AE11,AE12)
E2(AE21,AE22)

R(AE11,AE21,AR)

	Ternary many-to-many relationship
	[image: image2.png]

	E1(AE11,AE12)

E2(AE21,AE22)

E3(AE31,AE32)

R(AE11,AE21, AE31,AR)

	One-to-many relationship with mandatory participation
	[image: image3.png]

	E1(AE11,AE12, AE21, AR)

E2(AE21,AE22)

	One-to-many relationship with optional participation
	[image: image4.png]E,

Aeii
A

1)
<on

E;

@A

FOA:,

	E1(AE11,AE12)

E2(AE21,AE22)

R(AE11,AE21,AR)
Alternatively
E1(AE11,AE12, AE21*, AR*)

E2(AE21,AE22)

	Relationship with external identifiers
	[image: image5.png]£

E;

	E1(AE12,AE21, AE11, AR)

E2(AE21,AE22)

Figure 7.25 Translations from the E-R model to the relational-
The translations we have seen are summarized in Figure 7.25 and Figure 7.26. For each type of configuration of E-R schema, a description of the case and the possible translations are supplied.

In these tables, the symbols X and Y indicate any one of the allowed cardinalities. The asterisks indicate the possibility of having null values on the related attributes and the broken underline indicates an alternative key to the one indicated by a solid underline.
	Type
	Initial schema
	Possible translation

	One-to-one relationship with mandatory participation for both entities
	[image: image6.png]

	E1(AE11,AE12, AE21, AR)

E2(AE21,AE22)

Aftemalivety:
E2(AE21,AE22, AE11, AR)

E1(AE11,AE12)

	One-to-one relationship with optional participation for one entity
	[image: image7.png]

	E1(AE11,AE12, AE21, AR)

E2(AE21,AE22)

	One-to-one relationship with optional participation
for both entities
	[image: image8.png]

	E1(AE11,AE12)

E2(AE21,AE22, AE11*, AR*) Ahematiwely:
E1(AE11,AE12, AE21*, AR*)

E2(AE21,AE22)

Attemabvely
E1(AE11,AE12)

E2(AE21,AE22)

R(AE11,AE21,AR)

Figure 7.26 Translations from the E-R model to the relational.

7.3.7 Documentation of logical schemas
As with conceptual design, the result of logical design does not consist merely of a simple database schema but also of the documentation associated with it. First, much of the documentation of the conceptual schema produced in the logical design phase can be inherited by the logical schema. In particular, if the names of the concepts of the E-R schema are reused to construct the relational schema, the business rules defined previously can also be used for the documentation of the last one. This documentation must be completed with the referential constraints introduced by the translation.

In this context, we can adopt a simple graphical notation for the representation of both the relations and the referential constraints existing between the various relations. An example of this notation is given in Figure 7.27, with reference to the translation of the schema in Figure 7.17. In this representation keys or relations appear in bold face, arrows describe referential constraints and the presence of asterisks on the attributes denotes the possibility of having null values on them.

In this way, we can keep track of the relationships of the original E-R schema. This is useful to identify easily, the join paths, that is, the join operations necessary to reconstruct the information represented by the original relationship. Thus, in the case in the example, the projects in which the employees participate can be retrieved by means of the PARTICIPATION relation.
Another example of the use of this notation is given in Figure 7.28, with reference to the translation of the schema in Figure 7.20.
Note that this method also allows us to represent explicitly the relationships of the original E-R schema, to which, in the equivalent relational schema, no relation corresponds (the CONTRACT relationship in the example in question).
As a final example Figure 7.29 shows the representation of the relational schema obtained in Section 7.3.5. Now, the logical links between the various relations can be easily identified.
In Appendix A, we will see that a variant of the graphical formalism shown is .actually adopted by the Access database management system, both to represent relational schemas and to ex press join operations.

7.4 An example of logical design
Let us return to the example in the preceding chapter regarding the training company. The conceptual schema is shown again, for convenience, in Figure 7.30.
The following operations were planned on the data described by this schema:
· operation 1: insert a new trainee indicating all his or her data;

· operation 2: assign a trainee to an edition of a course;

· operation 3: insert a new instructor indicating all his or her data and the courses he or she is qualified to teach;

· operation 4: assign a qualified instructor to an edition of a course;

· operation 5: display all the information on the past editions of a course with title, class timetables and number of trainees;

· operation 6: display all the courses offered, with information on the instructors who are qualified to teach them;

· operation 7: for each instructor, find the trainees for all the courses he or she is teaching or has taught;

· operation 8: carry out a statistical analysis of all the trainees with all the information on them. on the edition of courses they have attended and on the marks obtained.

7.4.1 Restructuring phase
The database load is shown in Figure 7.31. We will now carry out the various restructuring tasks. The various transformations are shown together in the final schema in Section 7.3.3.
Analysis of redundancies There is only one redundant piece of data in the schema: the attribute NumberOfParticipants in COURSEEDITION, which can be derived from the relationships CURRENTATTENDANCE and PASTATTENDANCE The storage requirement is 4 x 1000 = 4000 bytes, having assumed that four bytes are necessary for every occurrence of COURSEEDITION to store the number of participants. The operations involved with this information are 2, 5 and 8. The last one of these can be left out because it deals with an infrequent operation that is carried out in batch mode. We will therefore evaluate the cost of operations 2 and 5 in the cases of the presence or absence of redundant data. We can deduce from the table of volumes that each edition of the course has, on average, eight classes and 10 participants. From this data we can easily derive the access tables shown in Figure 7.32.

From the access tables we obtain:
· with redundancy for operation 2 we have 2 x 50 = 100 read accesses and as many again in write accesses per day. while. for operation 5. we have 19 • 10 = 190 read .accesses per day for a total of 490 accesses per day (having given double weight to the write accesses);

· without redundancy: for operation 2 we have 50 read accesses per day and as many again in write accesses per day, while, for operation 5. we have 29 x 10 = 290 read accesses per day, for a total of 440 accesses per day (having given double weight to write accesses).

Thus, when the redundancy is present, we have disadvantages both in terms of storage and access time. We will therefore delete the attribute NumberOfParticipants from the entity COURSEEDITION.
Removing generalizations There are two generalizations in the schema: that relating to the instructors and that relating to the trainees. For the instructors, it can be noted that the relevant operations, that is. 3. 4, 6 and 7, make no distinction between freelance instructors and those employed on a permanent basis by the company. Furthermore, the corresponding entities have no specific attributes for them. Therefore, we decide to delete the child entities of the generalization and add an attribute Type to the INSTRUCTOR entity. This attribute has a domain made up of the symbols F (for freelance) and P (for permanent).
For the trainees, we observe that in this case too, the operations involving this data (operations 1, 2 and 8) make no substantial difference between the various types of occurrence. We can see, however, from the schema that professionals and employees both have specific attributes. We should, therefore, leave the entities EMPLOYEE and PROFESSIONAL, adding two one-to-one relationships between these entities and the TRAINEE entity. In this way, we can avoid having attributes with possible null values on the parent entity of the generalization and we can reduce the dimension of the relations. The result of the restructuring can be seen in the schema in Figure 7.33.
Partitioning and merging of concepts From the analysis of data and operations, many potential restructurings of this type can be identified. The first relates to the COURSEEDITION entity. We can see that operation 5 relates only to the past editions and that the relationships PASTTEACHING and PASTATTENDANCE refer only to these editions of the course. Thus, in order to make the above operation more efficient, we could decompose the entity horizontally to distinguish the current editions from the past ones. The disadvantage of this choice, however, is that the relationships COMPOSITION and TYPE would be duplicated. Furthermore, operations 7 and 8 do not make great distinctions between current editions and past ones and would be more expensive, because they would require visits to two distinct entities. Therefore, we will not partition this entity.

Two other possible restructurings that we could consider are the merging of the relationships PASTTEACHING and PRESENTTEACHING and the similar relationships PASTATTENDANCE and PRESENTATTENDANCE In both cases, we are dealing with two similar concepts between which some operations make no difference (7 and 8). The merging of these relationships would produce another advantage: it would no longer be necessary to transfer occurrences from one relationship to another at the end of a course edition. A negative factor is the presence of the attribute Mark, which does not apply to the current editions and could thus produce null values. For the rest, the table of volumes tells us that the estimated number of occurrences of the CURRENTATTENDANCE relationship is 500. Therefore, supposing that we need four bytes to store the marks, the waste of storage would be only two Kbytes. We can decide therefore to merge the two pairs of relationships as described in Figure 7.33. We must add a constraint that is not expressible by the schema, which requires that an instructor cannot teach more than one edition of a course in any one period. Similarly, a participant cannot attend more than one edition of a course at a particular time.

Finally, we need to remove the multi-valued attribute Telephone from the INSTRUCTOR entity. To do this we must introduce a new entity TELEPHONE linked by a one-to-many relationship with the INSTRUCTOR entity, from which the attribute will be removed.

It is interesting to note that some decisions made in this phase reverse, in some way, decisions made during the conceptual design phase. This is not surprising however: the aim of conceptual design is merely to represent the requirements in the best way possible, without considering the efficiency of the application. In logical design we must instead try to optimize the performance and re-examining earlier decisions is inevitable.

Selection of primary identifiers Only the TRAINEE entity presents two identifiers: the social security number and the internal code. It is far preferable to choose the second. A social security number can require several bytes while an internal code, which serves to distinguish 5000 occurrences (see volume table), requires no more than two bytes.

Thee is another pragmatic consideration to be made regarding identifiers to do with the COURSEEDITION entity. This entity is identified by the StartDate attribute and by the COURSE entity. This gives a composite identifier that, in a relational representation, must be used to implement two relationships (ATTENDANCE and TEACHING). We can see, however, that each course has a code and that the average number of editions of a course is five. This means that it is sufficient to add a small integer to the course code to have an identifier for the course editions. This operation can be carried out efficiently and accurately during the creation of a new edition. It follows that it is convenient to define a new identifier for the editions of the courses that replaces the preceding external identifier. This is an example of analysis and restructuring that is not in any of the general categories we have seen, but in practice can be encountered.

This is the end of the restructuring phase of the original e-r schema. The resulting schema is shown in Figure 7.33.
7.4.2 Translation into the relational model
By following the translation techniques described in this chapter, the E-R schema in Figure 7.33 can be translated into the following relational schema.
COURSEEDITION (Code, StartDate, EndDate, Course, Instructor)
CLASS (Time, Room, Date, Edition)
INSTRUCTOR (SSN, Surname, Age, TownOfBirth, Type)
TELEPHONE (Number, Instructor)
COURSE (Code, Name)
QUALIFICATlON (Course, Instructor)
TRAINEE (Code, SSN, Surname, Age, TownOfBirth, Sex)
ATTENDANCE (Trainee, Edition, Marks*)
EMPLOYER (Name, Address, Telephone)
PASTEMPLOYMENT (Trainee, Employer, StartDate, EndDate)
PROFESSIONAL (Trainee, Expertise, ProfesionalTitle*)
EMPLOYEE(Trainee, Level, Positton, Employer, StartDate)

The logical schema will naturally be completed by a support document that describes, among other things, all the referential constraints that exist between the various relations. This can be done using the graphical notation introduced in Section 7.3.7.
7.5 Logical design using CASE tools
The logical design phase is generally supported by all the CASE tools for database development available on the market. In particular, since the translation to the relational model is based on precise criteria, it is carried out by these systems almost automatically. On the other hand, the restructuring step, which precedes the actual translation, is difficult to automate and the various products provide little or no support for it. For example, some systems automatically translate all the generalizations according to just one of the methods described In Section 7.2.2. We have seen, however, that the restructuring of an E-R schema is a fundamental activity of the design for an important reason. Namely, it can provide solutions to efficiency problems that should be resolved before carrying out the translation and that are not relevant to conceptual design. The designer should therefore take care to handle this aspect without putting too much confidence into the tool available.

An example of the output of the translation step using a database design tool is shown in Figure 7.34. The example refers to the conceptual schema of Figure 6.14. The resulting schema is shown in graphical form, which represents the relational tables together with the relationships of the original schema. Note how the many-to-many relationship between EMPLOYEE and PROJECT has been translated into a relation. Also, note how new attributes have been added to the relations originating from entities to represent the one-to-many and one-to-one relationship. In the figure, the SQL code also appears, generated automatically by the system. It allows the designer to define the database using a specific database management system. Some systems allow direct connection with a DBMS and can construct the corresponding database automatically. Other systems provide tools to carry out the reverse operation: reconstructing a conceptual schema based on an existing relational schema. This operation is called reverse engineering and is particularly useful for the analysis of a legacy system, possibly oriented towards a migration to a new database management system.

7.6 Bibliography
Logical design is covered in detail in the books by Batini, Ceri and Navathe [7], Teorey [84] and Teorey and Fry [85]. The problem of translating an E-R schema into the relational model is discussed in the original paper by Chen [23] and in a paper by Teorey, Yang and Fry [86], which considers a detailed list of cases.

7.7 Exercises
Exercise 7.1 Consider the E-R schema in Exercise 6.4. Make hypotheses on the volume of data and on the operations possible on this data and, based on these hypotheses, carry out the necessary restructuring of the schema.
Then carry out the translation to the relational model.
Exercise 7.2 Translate the E-R schema on the personnel of a company (shown again for convenience in Figure 7.35) into a schema of the relational model.
Exercise 7.3 Translate the E-R schema obtained in Exercise 6.6 into a relational schema.
Exercise 7.4 Define a relational schema corresponding to the E-R schema obtained in Exercise 6.10. For the restructuring phase, indicate the possible options and choose one, making assumptions on the quantitative parameters. Assume that the database relates to certain apartment blocks, having on average five buildings each. and that each building has on average twenty apartments. The main operations are the registration of a tenant (50 per year per block) and recording the payment of rent.
Exercise 7.5 Translate the E-R schema of Figure 7.36 into a relational database schema. For each relation indicate the key and. for each attribute, specify if null values can occur (supposing that the attributes of the E-R schema do not admit null values).
Exercise 7.6 Take the E-R schema in Figure 7.37. Restructure the schema, deleting the generalizations. supposing the most important operations are as follows, each carried out 10 times per day:
· operation 1: read access to attributes A21, A22, A11, A12, A13 for all the occurrences of entity E2;

· operation 2: read access to attributes A41, A42, A31, A11, A12, A13 for all the occurrences entity E4;

· operation 3: read access to attributes A51, A52, A31, A11, A13 for all the occurences entity E5;

Exercise 7.7 Consider the conceptual schema in Figure 7.38, which describes bank account data. Observe that a client can have more than one account and that a single account can belong to many clients. Suppose that on this data. the following main operations are defined:

· operation 1: open an account for a client;

· operation 2: read the total balance for a client;

· operation 3: read the balance for an account;

· operation 4: withdraw money from an account by means of a transaction at the bank counter;

· operation 5: deposit money into an account by means of a transaction at a bank counter;

· operation 6: show the last 10 transactions for an account;

· operation 7: register an external transaction for an account;

· operation 8: prepare the monthly statement of an account;

· operation 9: find the number of accounts held by a client;

· operation 10: show the transactions for the last three months of accounts of each client with a negative balance.

Finally, suppose that in the operation stage, the database load for this application is that shown in Figure 7.39.
Carry out the logical design phase on the E-R schema, taking into account the data provided. In the restructuring phase, keep in mind the fact that there are two redundancies on the schema: the attribute TotalBalance and NumberOfAccounts in the entity CLIENT. These can be derived from the relationship ACCOUNTHOLDER and from the ACCOUNT entity.
Figure 7.1 Logical database design.

Figure 7.2 An E-R schema on the personnel of a company

Table of volumes�
�
Concept�
Type�
Volume�
�
Branch�
E�
10�
�
Department�
E�
80�
�
Employee�
E�
2000�
�
Project�
E�
500�
�
Composition�
R�
80�
�
Membership�
R�
1900�
�
Management�
R�
80�
�
Participation�
R�
6000�
�

Table of operations�
�
Operation�
Type�
Frequency�
�
Op 1�
I�
50 per day�
�
Op 2�
I�
100 per day�
�
Op 3�
I�
10 per day�
�
Op 4�
B�
2 per week�
�

Figure 7.3 Examples of volume table and operations table.

Figure 7.4 Example of a navigation schema

Table of accesses�
�
Concept�
Type�
Accesses�
Type�
�
Employee�
Entity�
1�
R�
�
Employment�
Relation�
1�
R�
�
Department�
Entity�
1�
R�
�
Participation�
Relation�
3�
R�
�
Project�
Entity�
3�
R�
�

Figure 7.5 Table of accesses for operation 2

Figure 7.6 Restructuring tasks of an e-r schema.

Figure 7.7 Fxamplcs of schemas with redundancies.

Table of volumes�
�
Concept�
Type�
Volume�
�
Town�
E�
200�
�
Person�
E�
1000000�
�
Residence�
R�
1000000�
�

Table of operations�
�
Operation�
Type�
Frequency�
�
Op1�
I�
500 per day�
�
Op2�
I�
2 per day�
�

Figure 7.8 Table of volumes and operations for the schema in Figure 7.7

Table of accesses in presence of redundancy�
�
Operation 1�
�
Concept�
Type�
Acc.�
Type�
�
Person�
E�
1�
W�
�
Residence�
R�
1�
W�
�
Town�
E�
1�
R�
�
Town�
E�
1�
W�
�
�
�
Operation 2�
�
Concept�
Type�
Acc.�
Type�
�
Town�
E�
1�
R�
�

Table of accesses In absence of redundancy�
�
Operation 1�
�
Concept�
Type�
Acc.�
Type�
�
Person �
E�
1�
W�
�
Residence�
R�
1�
W�
�
�
�
Operation 2�
�
Concept�
Type�
Acc.�
Type�
�
Town �
E�
1�
R�
�
Residence�
R�
5000�
R�
�

Figure 7.9 Tables of accesses for the schema on electoral roll data in Figure 7.7.

Figure 7.10 Example of a schema with generalization.

Figure 7.11 Possible restructurings of the schema in Figure 7. 10.

Figure 7.12 Possible restructuring of the schema in Figure 7 10

Figure 7.13 Example of partitioning of entities.

Figure 7.14 Example of deletion of multi-value attributes.

Figure 7.15 Example of merging of entities.

Figure 7.16 Example of partitioning of a relationship.

Figure 7.17 An E-R schema with a many -to-many relationship.

Figure 7.18 E-R schema with recursive relationship.

Figure 7 19 E-R schema with ternary relationship.

Figure 7.20 E-R schema with one-to-many relationships.

 Figure 7.21 E-R schema with external identifier.

Figure 7.22 E-R schema with one-to-one relationships.

Figure 7.23 E-R schema with one-to-one relationship

Figure 7.24 An e-r schema for translation.

Figure 7.27 Graphical representation of a translation of the schema in Figure 7.17.

Figure 7.28 Graphical representation of a translation of the schema in Figure 7.20-

Figure 7.29 Graphical representation of the relational schema obtained in Section 7.3.5.

Figure 7.30 The E-R schema of a training company

Table of volumes�
�
Concept�
Type�
Volume�
�
Class�
E�
8000�
�
CourseEdltion�
E�
1000�
�
Course�
E�
200�
�
Instructor�
E�
300�
�
Freelance�
E�
250�
�
Permanent�
E�
SO�
�
Trainee�
E�
5000�
�
Employee�
E�
4000�
�
Professional�
E�
1000�
�
Employer�
E�
8000�
�
PastAttendance�
R�
10000�
�
CurrentAttendance�
R�
500�
�
Composition�
R�
8000�
�
Type�
R�
1000�
�
PastTeaching�
R�
900�
�
CurrentTeaching�
R�
100�
�
Qualification�
R�
500�
�
CurrentErnployment�
R�
4000�
�
Pas Employment�
R�
10000�
�

�Table of operations�
�
Operation�
Type�
Frequency�
�
Op 1�
�
40 per day�
�
Op 2�
�
SO per day�
�
Op 3�
�
2 per day�
�
Op 4�
�
IS per day�
�
Op 5�
�
10 per day�
�
Op6�
�
20 per day�
�
Op7�
�
5 per day�
�
Op 8�
B�
10 per month�
�

Figure 7.31 Tables of volumes and operations for the schema in Figure 7.30.

Accesses with redundancy�
�
Operation 2�
�
Concept�
Cnstr�
Acc�
Type�
�
Trainee �
E�
1�
R�
�
CurrentAtt'nce�
R�
1�
W�
�
CourseEdition�
E�
1�
R�
�
CourseEdition�
E�
1�
W�
�
�
�
Operation 5�
�
Concept�
Cnstr�
Acc�
Type�
�
CourseEdition�
E�
I�
R�
�
Type�
R�
I�
R�
�
Course�
E�
�
R�
�
Compositton �
R�
B�
R�
�
Class�
E�
B�
R�
�

�Accesses without redundancy�
�
Operation 2�
�
Concept�
Cnstr�
Acc�
Type�
�
Trainee �
E�
1�
W�
�
CurrentAtt'nce�
R�
1�
R�
�
�
�
Operation 5�
�
Concept�
Cnstr�
Acc�
Type�
�
CourseEdition�
E�
1 �
R �
�
Type�
E�
1�
R�
�
Course�
R�
1�
R�
�
Composition�
R�
8�
R�
�
Class�
E�
8�
R�
�
PastAttendance�
R�
10�
R�
�

Figure 7-32 Access table for the schema in Figure 7.30.

Figure 7.33 The E-R schema of Figure 7.30 after the restructuring phase

Figure 7.34 Logical design with a CASE tool.

Figure 7.35 An E-R schema on the personnel of a company.

Figure 7.36 An e-r schema to translate.

Figure 7.37 An E-R schema with generalizations.

Figure 7.38 An E-R schema to translate.

Volumes�
�
Concept�
Type�
Volume�
�
Clien�
E �
15000 �
�
Account�
E�
20000�
�
Transaction�
E�
600000�
�
Person�
E�
14000�
�
Company �
R�
1000 �
�
AccountHolder�
E�
30000�
�
Operation�
R�
800000�
�

�Operations�
�
Operation�
Type�
Frequency�
�
Op1�
I�
100 per day�
�
Op2�
I�
500 per day�
�
Op3�
I�
1000 per day�
�
Op4�
I�
2000 per day�
�
Op5�
I�
1000 per day�
�
Op6�
I�
200 per day�
�
Op7�
B�
1500 per day�
�
Op8�
B�
1 per month�
�
Op9�
I�
75 per day�
�
Op 10�
I�
20 per day�
�

Figure 7.39 Volumes and operations tables for the schema in Figure 7.38.

7.23

