Chapter 9
Technology of a database server

[image: image1.wmf]t

T

t

B

B

t

T

t

p

-

÷

ø

ö

ç

è

æ

-

´

÷

ø

ö

ç

è

æ

´

÷

÷

ø

ö

ç

ç

è

æ

=

1

1

1

)

(

Technology of a database server

This chapter concentrates on the technological aspects of database servers, that is, of systems dedicated to data management. While up to now we have concentrated on the external functionality of database management systems, we will now look at the internal mechanisms that make such functionality possible. There are various important reasons for looking 'inside' a dbms.
· Firstly, database administrators are often required to make decisions about configurations or execution parameters that influence the behavior of the system, and such decisions require an understanding of the underlying technology.
· Secondly, although the mechanisms described below are often encapsulated within database products, many of these mechanisms can be extracted from the DBMS and made available in the form of 'services'. Knowledge of these services is essential in order to decide on the best configuration of an application.

The following components are present in a data management server:
· The optimizer decides the best strategies for data access, that is, the ones that guarantee the fastest query response. This component receives a query, from which it performs lexical, syntactic and semantic analyses, to identify possible errors. It then transforms the correct queries into an internal form, similar to the relational algebra seen in Chapter 3, and selects the best strategy for access to the data.
· The access methods manager, known as the relational storage system (RSS) in a relational DBMS, has the task of carrying out the physical accesses to data, according to the strategy defined by the optimizer.

· The buffer manager is responsible for the management of actual transfers of the pages of the database from the secondary storage devices to the main memory. This component manages large areas of the main memory allocated to the DBMS and is often shared among the various applications.
· The reliability control system deals with the preservation of the contents of the database in case of failures.

· The concurrency control system regulates the simultaneous accesses to the database and ensures that the interference among applications does not cause a loss of consistency.
This division of a server into five modules does not always correspond to the actual configuration of a system, but is ideal as a model for the study of the mechanisms. We will deal with the five components proceeding from the lowest to the highest levels of functionality, and in doing so will construct an abstract machine for data management.

We will first introduce the concept of transaction, which is fundamental to the understanding of the requirements that the DBMS technology must meet. We will then discuss concurrency control, buffer management, and reliability control. Finally, we will deal with physical access structures and query optimization. At the end of this construction, it will be possible to understand how the five sub-systems are integrated into the architecture of a centralized server.
We will postpone the description of the techniques for the interaction of multiple servers in a distributed or parallel architecture to the next chapter. For the sake of consistency, we will refer to relational technology, although a large part of the discussion is applicable both to pre-relational systems and to object-oriented systems.
9.1 Definition of transactions

A transaction identifies an elementary unit of work carried out by an application, to which we wish to allocate particular characteristics of reliability and isolation. A system that makes available mechanisms for the definition and execution of transactions is called a transaction processing system.
A transaction can be defined syntactically: each transaction, irrespective of the language in which it is written, is enclosed within two commands: begin transaction (abbreviated to bot) and end transaction (abbreviated to eot). Within the transaction code two particular instructions can appear, commit work and rollback work, to which we will make frequent reference using the two terms commit and abort, which indicate the action associated with the respective instructions.
The effect of these two commands is crucial for the outcome of the transaction. The transaction will be completed successfully only following a commit command, while no tangible effect will be shown on the database as the result or an abort command. From the expressive power aspect, note that the rollback work instruction is very powerful, in that through this the database user can cancel the effects of the work carried out during the transaction, irrespective of its complexity. An example of transaction is given in the following code:

begin transaction
x := x - 10;
y := y * 10;
commit work;
end transaction
We can interpret the above transaction as a bank operation to transfer a sum from account x to account y. The transaction code shown in the example provides an abstract description of the transaction, which in reality corresponds to a much more complex section of code, and which could be written, for example, in SQL.

A transaction is described as well-formed if it fulfils the following conditions: it begins its execution with begin transaction, ends with end transaction, and includes in every possible execution only one of the two commands, commit work or rollback work. Further, no update or modification operations are carried out following the execution of the commit work or rollback work command. In some transactional interfaces, a pair of commands end transaction and begin transaction are immediately and implicitly carried out after each commit or abort, to render well-formed all the transactional computations. From now on, we will assume that all the programs for the modification of the contents of a database are well-formed.

9.1.1 ACID properties of transactions
Transactions must possess particular properties: atomicity, consistency, isolation and durability. Since the initials of these terms give rise to the acronym ACID, these are often referred to as the acid properties of transactions.

Atomicity Atomicity represents the fact that a transaction is an indivisible unit of execution. Either all the effects of a transaction are made visible, or the transaction must have no effect on the database, with an "all or nothing' approach. In practice, it is not possible to leave the database in an intermediate state arrived at during the processing of the transaction.

Atomicity has significant consequences on the operational level. If during the execution of the operations, an error appears and one of the operations of the transaction cannot be completed, then the system must be able to recreate the situation at the start of the transaction. This means undoing the work carried out by those instructions up to that time. Conversely, after the execution of the commit command, the system must ensure that the transaction leaves the database in its final state. As we shall see, this can mean that the system must redo the work carried out. The correct execution of the commit fixes the atomic (and thus indivisible) event in which the transaction is successfully completed. Before executing the commit, any failure will cause the elimination of all the effects of the transaction, whose original state is recreated.
When the rollback work command is carried out, the situation is similar to suicide decided independently within the transaction. Conversely, the system can decide that the transaction cannot be successfully completed and kills the transaction. Finally, various transactions can be killed following a failure in the system. In both situations (suicide or homicide), the mechanisms that create the abort of a transaction use the same data structures and sometimes the same algorithms. In general, we expect the applications to be well written and for this reason most transactions are successfully completed and end with a commit command. In only a few sporadic cases due to failures or unforeseen situations do the transactions terminate with an abort command.
Consistency Consistency demands that the carrying out of the transaction does not violate any of the integrity constraints defined on the database. When a transaction violates a constraint, the system intervenes to cancel the transaction or to correct the violation of the constraint.
The verification of constraints of immediate type can be made during the transaction execution: a constraint violation removes the effects of the specific instruction that causes the violation of the constraint, without necessarily causing the transactions to be aborted. By contrast, the verification of integrity constraints of the deferred type must be carried out at the end of the transaction, after the user has requested a commit. Note that in this second case, if the constraint is violated, a commit instruction cannot be successfully completed, and the effects of the transaction are cancelled in extremis. That is, just before producing and showing the final state of the database, given that this state would be inconsistent.
Isolation Isolation demands that the execution of a transaction is independent of the simultaneous execution of other transactions. In particular, it requires that the parallel execution of a set of transactions gives the result that the same transactions would obtain by carrying them out singly. The goal of isolation is also to make the result of each transaction independent of all the others. It must thus prevent the execution of a rollback of a transaction from causing the rollback of other transactions, possibly generating a chain reaction.
Durability Durability, on the other hand, demands that the effect of a transaction that has correctly executed a commit is not lost. In practice, a database must guarantee that no piece of data is lost for any reason. To understand the importance of durability, consider the use of databases that support financial applications, such as banks and systems for stock trading.
9.1.2 Transactions and system modules
Atomicity and durability are guaranteed by the reliability control system. Isolation is guaranteed by the concurrency control system. Finally, consistency is guaranteed by DDL compilers, which introduce appropriate consistency controls in the data and appropriate procedures for their verification, which are then carried out by the transactions.

In conclusion, note that the definition of transaction given in this section is different from the concept of transaction that a user could have. For the system, a transaction is a unit of execution characterized by ACID properties.

For the user, a transaction is any interaction with the system, characterized by the production of an initial input of data, which is followed by a response from the system. Often the two notions coincide, but at other times, a system transaction contains various user transactions, or a user transaction contains various system transactions.
9.2 Concurrency control

A dbms must often serve many applications and respond to requests from many users. The application load of a DBMS can be measured using the number of transactions per second (abbreviated to tps) managed by the DBMS to satisfy the needs of applications. Typical systems, for example banks or financial information systems, must respond to loads of tens to hundreds of tps. The booking systems of large airlines or credit card management must reach thousands of tps. For this reason, it is essential that the transactions of a dbms be carried out simultaneously. It is unthinkable that the transactions could be carried out in sequence. Only the concurrency of transactions allows for the efficient operation of a dbms maximizing the number of transactions carried out per second and minimizing their response times.

9.2.1 Architecture of concurrency control
The concurrency control system refers to the lowest level in the architecture of a DBMS, relative to the input/output operations, which carry out the transfer of blocks from the secondary memory to the main memory and vice-versa. Consider read and write actions. Each read operation consists of the transfer of a block from the secondary memory to the main memory, and each write operation consists of the opposite transfer. Traditionally, blocks are called pages once they are loaded into the memory. The read and write operations are managed by a module of the system generally known as the scheduler, which determines whether the requests can be satisfied. This situation is illustrated in Figure 9.1.
[image: image6.wmf]B

F

T

´

[image: image7.png]

In this section we will give an abstract description of the database in terms of objects x. y, z. Using these symbolic names, we refer to numeric data (to which we will apply simple arithmetic operations), but in reality reading and writing them requires the reading and writing of the whole page on which the data is to be found.

9.2.2 Anomalies of concurrent transactions
The simultaneous execution of various transactions can cause problems. termed anomalies; their presence causes the need of a concurrency control system. Let us look at three typical cases.

Update loss Let us suppose that we have two identical transactions that operate on the same object of the database.
t1: r(x), x=x+1. w(x)
t2: r(x), x= x+ 1. w{x)
[image: image8.png]€ wmaveews

8

Here. r(x) represents the reading of the generic object x and w{x) represents the writing of the same object. A change in value of the object x is done by an application program. Let us suppose that the initial value of x is 2. If we carry out the two transactions t1 and t2 in sequence, at the end x will have the value 4. Let us now analyze a possible concurrent execution of the two transactions, which highlights the sequence of the actions. We will assume that each action happens instantly.
In this case, the final value of x is 3, because both the transactions read 2 as the initial value of x. This anomaly is called a lost update, because the effects of the transaction t2 (the first to write the new value for x) are lost.
[image: image9.png]

Dirty read Consider now the case in which the first transaction is aborted:
The final value of x at the end of the execution is 4, but it should be 3. The critical aspect of this execution is the reading of the transaction t2, which sees an intermediate state generated by the transaction t1. The transaction t2, however, should not have seen this state, because it is produced by the transaction t1, which subsequently carries out an abort. This anomaly is known as dirty read, as a piece of data is read that represents an intermediate state in the processing of a transaction Note that the only way to restore consistency following the abort of t1 would pc to impose the abort of t2 and. therefore, of all the transactions that would have read data modified by t2. This situation, known as the 'domino effect', is extremely hard to manage.

[image: image10.png]= 17 11
Sie wel) (0 weld) 6(@) Bl) wyiz) w0
[C=S -

=11
Su owald wle) 600 G r@ W) n@) w) \'x
== L_1 ||

Inconsistent read Let us suppose now that the t1 transaction carries out only read operations, but that it repeats the read of the x data in successive instants, as described in the following execution:
In this case, x assumes the value 2 after the first read operation and the value 3 after the second read operation. Instead, it is convenient that a transaction that accesses the database twice finds exactly the same value for each piece of data read, and is not affected by the other transaction.

[image: image11.png]

Ghost update Consider a database with three objects, x, y and z, which satisfy an integrity constraint, such that x + y + z = 1000; assume that we carry out the following transactions:

The transaction t2 does not alter the sum of the values and thus does not violate the integrity constraint. However, at the end of the evaluation of t1 the variable s, which contains the sum of x, y and z, takes the value 1100. In other words the transaction t1 observes only some of the effects of the transaction t2, and thus observes a state that does not satisfy the integrity constraints. This anomaly is called a ghost update.
9.2.3 Concurrency control theory
We will now give a careful analysis of the problems posed by the concurrent execution of transactions. For this, we must define a formal model of a transaction. We define a transaction as a sequence of read or write actions. We assume that each transaction has a unique, system-assigned transaction identifier. In comparison with the four examples of anomaly illustrated above, this model omits any reference to the manipulation operations performed on the data by the transaction. As far as the theory of concurrency control is concerned, each transaction is a syntactical object, of which only the input/output actions are known.

Let us assume that all the transactions are initiated by the begin transaction command and terminated by end transaction, which, however, will also be omitted. Furthermore, the concurrency control system accepts or refuses concurrent executions during the evolution of the transactions, without knowing their final outcome (commit or abort). For example, a transaction t1 is represented by the sequence:

t1 : r1(x) r1(y) w1(x) w1(y)
We assume that normally no transaction reads or writes the same object more than once.

Given that the transactions happen concurrently, the input and output operations are requested by various transactions at successive times. A schedule represents the sequence of input/output operations presented by concurrent transactions. A schedule S1 is thus a sequence of the type:

S1: r1(x)r2(z)w1(x)w2(z)...
where r1(x) represents the reading of the object x carried out by the transaction t1, and w2(z) the writing of the object 2 carried out by the transaction t2. The operations appear in the schedule following the chronological order in which they were carried out in the database.

The task of concurrency control is to accept some schedules and refuse others. For example, the system must avoid the anomalies shown in the section above. This is carried out by a scheduler, the task of which is to keep track of all the operations performed on the database by the transactions, and to accept or reject the operations that are requested by the transactions.

We will begin by assuming that the transactions that appear in schedules have a result (commit or abort) known in advance. In this way, we can ignore the transactions that produce an abort, removing all their actions from the schedule, and concentrating only on the transactions that produce a commit. Such a schedule is known as a commit-projection of the actual execution of the input/output operations, since it contains only the actions of transactions that produce a commit. This assumption simplifies the theory of concurrency control, but is unacceptable in practice, because the scheduler must decide whether or not to accept the actions of a transaction independently of their final result, which cannot be known beforehand. For example this assumption makes it impossible to deal with 'dirty reads' described above, which are generated when the transaction results in an abort. Thus, we must abandon this assumption when we move from the theory of concurrency control to practical concurrency control methods.

We now need to determine the conditions of the schedules that guarantee the correct execution of the corresponding transactions. For this purpose, we define as serial a schedule in which the actions of all the transactions appear in sequence, without being mixed up with instructions from other transactions. The schedule S2 is a serial schedule in which the transactions t0, t1 and t2 are executed in sequence.

S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)

The execution of the commit-projection of a given schedule Si is correct when it produces the same result as some serial schedule Sj, of the same transactions. In this case, we say that Si, is serializable. We must still clarify, however, what we mean by 'producing the same result'. To this end various successive notions of equivalence between schedules are introduced. Each notion allows the identification of a more or less wide-ranging class of acceptable schedules, at the cost, however, of a rather complex test for equivalence. First, we will introduce view-equivalence then the conflict-equivalence, then two-phase locking, and finally timestamp-based concurrency control.

View-Equivalence The notion of view-equivalence requires, as preliminary definitions, the notions of the reads-from relation and of the final writes. A read operation ri(x) reads-from a write wj(x) in a schedule S when wj(x) precedes ri(x) in S and there is no other write operation wk(x) included between the two operations ri(x) and wj(x) in S. A write operation wi(x) in a schedule S is called a final write if it is the last write of the object x to appear in S.
Two schedules are called view-equivalent (Si =v Sj) if they possess the same reads-from relation and the same final writes. A schedule is called view-seralizable if it is view-equivalent to some serial schedule. The set of view-serializable schedules is called vsr.
Consider the schedules S3, S4, S5, S6. S3 is view-equivalent to the serial schedule S4 (thus, it is view-serializable). S5 is not view-equivalent to S4, but it is view-equivalent to the serial schedule S6, and thus this also is view-serializable.

S3 : w0(x) r2(x) r1(x) w2(x) w2(z)
S4 : w0(x) r1(x) r2(x) w2(x) w2(z)
S5 : w0(x) r1(x) w1(x) r2(x) w1(z)
S6 : w0(x) r1(x) w1(x) w1(z) r2(x)
Note that the following schedules, corresponding to anomalies of update loss, inconsistent reads and ghost updates, are not view-serializable:

S7 : r1(x) r2(x) w2(x) w1(x)
S8 : r1(x) r2(x) w2(x) r1(x)
S9 : r1(x) r1(y) r2(z) r2(y) w2(y) w2(z) r1(z)

The view-equivalence of two given schedules can be decided by an algorithm that has polynomial complexity. Such an algorithm simply scans the two schedules and checks that the reads-from relations and the final writes are identical. Therefore, the concept of view-equivalence can be used to compare two different schedules. However, to determine whether a schedule is view-serializable requires us to test whether it is view-equivalent to any serial schedule; this is an HP-complete problem
. This complexity is due to the need to compare the given schedule with all the serial schedules that can be obtained by permuting, in every way possible, the order of the transactions that are present in the schedule. Therefore, this notion of equivalence cannot be used to decide on serializability with enough efficiency. It is thus preferable to define a more restricted condition of equivalence, which does not cover all the cases of view-equivalence between schedules, but which is usable in practice, being less complex.

Conflict-equivalence A more practical notion of equivalence requires the definition of conflict. We say that the action ai is in conflict with aj (i (j), if both operate on the same object and at least one of them is a write. There can exist read-write conflicts (rw or wr) and write-write conflicts (ww).
We say that the schedule Si is conflict-equvalent to the schedule Sj (Si = C Sj) if the two schedules present the same operations and each pair of operations in conflict is in the same order in both the schedules. A schedule is therefore conflict-serializable if there is a serial schedule that is conflict-equivalent to it. The set of conflict-serializable schedules is called csr.
It is possible to prove that the class of CSR schedules is properly included in that of the VSR schedules. There are thus schedules that belong to VSR but not to CSR, while all the CSR schedules belong to VSR. Thus conflict serializability is a sufficient but not necessary condition for view-serializability.
[image: image12.png]

[image: image13.png]/1%

Figure 9.2 illustrates the conflict-serializable schedule S10 with its conflicts in evidence, next it shows the serial schedule S11, which is conflict-equivalent to S10.
It is possible to determine whether a schedule is conflict-serializable by means of the conflict graph. The graph is constructed with a node for each transaction and an arc from t1 to tj. If there is at least one conflict between an action ai and an action aj such that ai precedes aj (see Figure 9.2). It can be proved that the schedule is in CSR if and only if the graph is acyclic. The analysis of cyclicity of a graph has a linear complexity with respect to the size of the graph itself.

In spite of the linear complexity, conflict serializability is still too laborious in practice. For example, consider a system with 100 tps and transactions with access to 10 pages and lasting on average 5 seconds. In each instant, it will be necessary to organize graphs with 500 nodes and record the 5000 accesses of the 500 active transactions. Further, this graph continues to modify itself dynamically, making decisions very laborious for the scheduler.

The technique is unacceptable in a distributed database context, given that, as we shall see, the graph must be reconstructed based on arcs that are recognized by the different servers of the distributed system. Thus, conflict equivalence, too, cannot be used in practice.

Two-phase locking The concurrency control mechanisms used by almost all commercial DBMSs is called locking; it overcomes the limitations discussed above. Locking is based on a very simple principle: all the read and write operations must be protected by means of the execution of three different primitives: r_lock, w_lock and unlock. The scheduler (also known as the lock manager) receives a sequence of execution requests for these primitives by the transactions, and their outcome is determined by a simple inspection of an adequate data structure, at a negligible computational cost.
During the execution of read and write operations the following constraints must be satisfied:

1. Each read operation should be preceded by an r_lock and followed by an unlock. The lock in this case is called shared, because more than one lock of this type can be active on one piece of data at one time.
2. Each write operation must be preceded by a w_lock and followed by an unlock. The lock in this case is known as exclusive, because no other locks (exclusive or shared) can exist on the same piece of data.
When a transaction follows these rules it is called well formed with regard to locking. Note that the lock operation of a resource can happen much earlier than a read or write action on that resource. In some systems, a single lock primitive is available, which does not distinguish between read and write, and thus behaves like an exclusive lock. If a transaction must read and then write a resource. the transaction can request only an exclusive lock, or it can start with a shared lock and can then move from a shared lock to an exclusive lock, 'increasing' the level of lock; this process requires a specialized lock primitive, and is called lock escalation.
In general, transactions are automatically well-formed with regard to locking, because the appropriate lock and unlock requests are automatically issued by transactions when they need to read or write pages. The lock manager receives the lock requests from the transactions and can either grant or deny the lock, based on the locks previously granted to the other transactions. When a luck request is granted, we say that the corresponding resource is acquired by the requesting transaction. At the time of unlock, the resource is released. When a lock request is not granted, the requesting transaction is put in a waiting state. The waiting ends when the resource is unlocked and becomes available. The locks already granted are stored in a lock table, managed by the lock manager
Each lock request received by the lock manager is characterized only by the identifiers of the transaction making the request, and by the resource for which the request is carried out. The policy followed by the lock manager to grant locks is represented in the conflict table in Figure 9.3, in which the rows identify the requests and the columns the current state of the resource requested. The first value of the cell shows the result of the request and the second value in the cell shows the state that will be assumed by the resource after the execution of the primitive.
[image: image14.png]

The three No entries present in the table represent the conflicts that can appear when a read or write is requested on an object already locked for writing, or a write on an object already locked for reading. In practice, only when an object is locked for reading is it possible to give a positive response to another request for a read lock, as shown by the OK entry. In the case of unlock of a resource locked by a shared lock, the resource becomes free when there are no other read transactions operating on it, otherwise, the resource remains locked. For this reason, the corresponding cell of the matrix of conflicts has the depends value. To keep track of the number of readers we introduce a counter, which increases at each request for r_lock granted, and decreases at each unlock.
The locking mechanism seen so far ensures that the writing actions are exclusive, while reading actions can occur concurrently. This is the traditional control of readers and writers, normally presented in the context of operating systems. In order to guarantee, however, that the transactions form a serializable schedule, we must impose the following restriction on the ordering of the lock requests. The restriction is known as two-phase locking (2PL).
Two-phase locking (2PL): A transaction, after having released a lock. cannot acquire other locks.
[image: image15.png]el L L

‘extend
= -y
3}

@ @
File System

[image: image16.png]ey

Main
buffer
Database Management System

As a consequence of this principle, two different phases can be distinguished during the execution of the transaction. During the first phase, locks on resources are acquired (growing phase); during the second phase, the acquired locks are released (shrinking phase). The transfer of an r_lock to a w_lock constitutes an increase in the level of lock on the resource, which can thus appear only in the growing phase of the transaction. Figure 9.4 shows a graphic representation of the requested behavior of the two-phase locking protocol. The x-axis represents time and the y-axis represents the number of resources obtained by a transaction during its execution.

Consider a system in which the transactions are well-formed with regard to locking, with a lock manager that respects the policy described in the conflict table of Figure 9.3, and in which the transactions follow the two-phase locking principles. Such a system is characterized by the serializability of its transactions. The 2PL class contains the schedules that satisfy these conditions.

We will now give an informal proof of the fact that if a schedule satisfies 2PL then it is conflict serializable, In other words, 2PL is contained in CSR. Assume, by way of contradiction, that a schedule S satisfies 2PL and is not in CSR. If the schedule does not belong to CSR, this means that the conflict graph among the transactions contains a cycle t1, t2, ..., tn, t1. If there is a conflict between t1 and t2, it means that there is a resource on which both the transactions operate in conflict. For the transaction t2 to proceed, it is necessary that transaction t1 releases its lock on the resource. On the other hand, if we observe the conflict between tn and t1, it means that there is a resource on which both the transactions operate in conflict. For the transaction t1 to proceed, it is necessary for the transaction t1 to acquire the lock on the resource, released by tn Thus, the transaction t1 cannot be two-phased. It releases a resource before acquiring another.

It is easier to prove that the 2PL and CSR classes are not equivalent, and thus that 2PL is strictly included in CSR. To do this, it is sufficient to show an example of a schedule that is not in 2PL but is in CSR, such as:

S12 : r1(x) w1(x) r2(x) w2(x} r3(y} w1(y)

In this schedule, the t1 transaction must release an exclusive lock on the resource x and then request an exclusive lock on the resource y therefore, it cannot be produced by a two-phase locking scheduler. Conversely, the schedule is conflict-serializable relative to the sequence t3, t1, t2.

Finally, let us look at how two-phase locking resolves the problem of the ghost updates. Consider the example introduced in Section 9.2.2. We will represent the same sequence of accesses that introduced a ghost update, and show that 2PL resolves the problem. Figure 9.5 describes for each resource its free state, read-locked from the i-th transaction (i: read) or write-locked from the i-th transaction (i: write). We will also illustrate the negative result of a lock request from the i-th transaction, left in a waiting state (i: wait). Note that, as a result of 2PL, the lock request of t1 relative to the resources z and x are put in waiting, and the transaction t1 can proceed only when these resources are unlocked by t2. At the end of the transaction, the variable s contains the correct value of the sum x + y + z.
Remember at this point the hypothesis of using a commit-projection. To remove it, it is necessary to introduce a further constraint on the 2PL protocol, thereby introducing the so-called strict 2PL:
[image: image17.png]

Strict two-phase locking: the locks on a transaction can be released only after having carried out the commit/abort operations.
With this constraint, the locks are released only at the end of the transaction, after which each item of data has arrived at its final state. This version of 2PL is the one used by commercial DBMSs. By using strict 2PL the anomaly of dirty reads, shown in Section 9.2.2, does not occur. The example in Figure 9.5 uses strict 2PL. in that the release actions of the lock follow the commit action, explicitly required by the schedule.

Concurrency control based on timestamps We will conclude the over​view of concurrency control theory by introducing a method that is easy to manage, but is less efficient than two-phase locking. This method makes use of a timestamp, that is, of an identifier that defines a total ordering of temporal events within a system. In centralized systems, the timestamp is generated by reading the value of the system clock at the time at which the event happened. The concurrency control with timestamps (TS method) is carried out as follows:

· every transaction is assigned a timestamp that represents the time at which the transaction begins.

· a schedule is accepted only if it reflects the serial ordering of the transactions based on the value of the timestamp of each transaction.

This method of concurrency control, perhaps the simplest of all from the point of view of its construction, serializes transactions on the basis of the order in which they acquire their timestamps. Each object x has two indicators, RTM(.x) and WTM(x), which are the highest timestamps of the transactions that carried out respectively read and write operations on x. The scheduler receives requests for access to objects of the type read(x, ts) or write(x, ts), where ts represents the timestamp of the requesting transaction. The scheduler accepts or rejects the requests according to the following policies:

· read(x,ts): if ts < WTM(x) then the request is rejected and the transaction is killed, otherwise the request is accepted and RTM(x) is set equal to the greater of RTM(x) and ts.

· write(x. ts): if ts < WTM(x) or ts < RTM(x) then the request is rejected and the transaction is killed, otherwise the request is accepted and WTM(x) is set equal to ts.
In practice, no transaction can read or write an item of data written by a transaction with a greater timestamp, and cannot write on an item of data that has already been read by a transaction with a greater timestamp.

Let us look at an example. Suppose that RTM(x) is equal to 7 and WTM(x) equals 5 (that is. the object x was read by the transaction with highest timestamp 7 and written by the transaction with highest timestamp 5).
Below, we will describe the scheduler's reply to the read and write requests received:

[image: image18.png]Hwrite in log

f

U(TX.BSAS) UTY.BSAS) C
1

T

®)

j -

The TS method causes the forced abort of a large number of transactions. Furthermore, this version of the method is correct only under the hypothesis of use of a commit-projection. To remove this hypothesis we must 'buffer' the writes, that is, store them in memory and transcribe them to the secondary memory only after the commit. This means that other transactions wanting to read the data stored in the buffer and waiting for commit are also made to wail until the commit of the writing transaction. This has the effect of introducing wait mechanisms similar to those of locking.

Multiversion concurrency control An interesting modification of this method on the theoretical level is the use of multiversions. This consists of keeping many copies of the objects of the database, one for each transaction that modifies it. Each time that a transaction writes an object, the old value is not discarded, but a new copy is created, with a corresponding WTMN(x). We have, however, a sole global RTM(x). Thus at any time, N >= 1 copies of each object x are active. By this method, the read requests are never refused, but are directed to the correct version of the data according to the timestamp of the requesting transaction. The copies are discarded when they are no longer useful, in that there are no read transactions interested in their values. The rules of behavior become;

· read(x, ts): a read is always accepted. The copy xk is selected for reading such that: if ts > WTMN(x), then k = N. otherwise k is taken such that WTMk(x) < ts < WTMk+1 (x).
· write(x, ts): if ts< RTM(x) the request is refused, otherwise a new version of the item of data is added (N increased by one) with WTMN(x) = ts.
The idea of adopting many versions, introduced theoretically within the context of timestamp-based methods, has also been extended to other methods, including two-phase locking. An interesting use of the versions is obtained by limiting the maximum number of copies to two, that is, keeping an earlier and a later copy of each update during write operations. The read transactions which are synchronized before the write transaction can access the earlier copy

Comparison of VSR, CSR, 2PL and TS Figure 9.6 illustrates the taxonomy of the methods VSR, CSR, 2PL and TS. Observe that the VSR class is the roost general: it strictly includes CSR, which in its (urn includes both the 2PL class and the TS class. 2PL and TS in their turn present a non-empty intersection, but neither of them includes the other. This last characteristic can be easily verified, by constructing a schedule that is in TS but not in 2PL, or in 2PL but not in TS, or finally in 2PL and in TS.

[image: image19.png]

[image: image20.png]Access methods manager

H3

FY14

i

First, we will show that there can exist schedules that are in TS but not in 2PL. Consider the schedule S13, in which the indices of transactions are interpreted as timestamps:
S13: r1(x) w2(x) r3(x) r1(y) w2(y) r1(y) w3(v) r4(y) w4(y) w5(y)

[image: image21.png]useful part of the page

access method control information

file system control information

[image: image22.png]4

=
L -®

Kl

|-

The corresponding graph of conflicts, illustrated in Figure 9.7, shows the absence of cycles; thus, the schedule belongs to CSR. The serial ordering of the transactions that is conflict-equivalent to S13 is t1 t2 t3 t4 t5. The schedule is not 2PL because t2 first releases x (so that it is read by t3) and then acquires y (released by t1): but is actually in TS since, on each object, the transactions operate in the order defined by their timestamps.
A schedule that is both in TS and in 2PL is the simple schedule r1(x) w1(x) r2(x) w2(x). On the other hand, the schedule r2(x) w2{x) r1(x) w1(z), in which transaction t2 acquires the timestamp after transaction t1 but presents itself first to the object x. does not belong to TS but to 2PL.

Let us compare 2PL and TS, the two techniques that can be used in practice. Some significant differences emerge.

· In 2PL, the transactions are put in waiting. In TS they are killed and then restarted.
· The serialization order in 2PL is imposed by conflicts, while in TS it is imposed by the timestamps.
· The necessity of waiting for the commit of the transaction before showing its final state causes a lengthening of the locking time in 2PL (the transfer from 2PL to strict 2PL) and the creation of waiting conditions in TS.
· The 2PL method can give rise to deadlocks, which we will see in the next section.
· The restart used by TS costs more that the waiting time imposed by 2PL.
If we analyze the choices made by commercial systems, we can observe that almost all commercial DBMSs use strict 2PL. Therefore we devote the next section to the discussion of a few more aspects and problems arising in the use of locks.
9.2.4 Lock management
The lock manager is a component of the DBMS, used by all the processes that access the database. The lock manager provides for these processes an interface that is based on the three procedures r_lock, w_lock and unlock generally characterized by the following parameters:

r_lock (T, x, errcode, timeout)
w_lock (T, x, errcode, timeout)
unlock (T, x)

T represents the identifier for the transaction; x the element for which the lock is requested or released; errcode represents a value returned by the lock manager, and is equal to zero whenever the request is satisfied, while it assumes a non-zero value whenever the request is not satisfied; timeout represents the maximum interval that the calling procedure is prepared to wait to obtain the lock on the resource.
When a process requests a resource and the request can be satisfied, the lock manager records the change of status of the resource in its internal table and immediately returns the control to the process. In this case, the delay introduced by the lock manager on the execution time of the transaction is very small.
However, when the request cannot be satisfied immediately, the system inserts the requesting process into a queue associated with that resource. This causes an arbitrarily long waiting time, and thus the process associated with the transaction is suspended. As soon as a resource is released, the lock manager checks whether there are processes waiting for the resource; if so, it grants the resource to the first process in the queue. The efficiency of the lock manager thus depends on the probability that the request for a transaction will conflict with other transactions.

When a timeout is released and the request is not satisfied, the requesting transaction can carry out a rollback, which will generally be followed by a restart of the same transaction. Alternatively, it can decide to continue, repeating the request for a lock, and keeping all the locks that were previously acquired.

The lock tables are accessed frequently. For this reason, the lock manager keeps the information in the main memory, so as to minimize the access times. The tables have the following structure: two status bits, which are allocated to each object to represent the three possible states, and a counter that represents the number of processes reading that object.

Hierarchical locking Up to now we have discussed the locking of generic resources and objects of the database, in that the theoretical principles on which 2PL is based are independent of the type of objects to which the method is applied. In many real systems, however, it is possible to specify the lock on different levels. This is known as lock granularity, for example, it is possible to lock entire tables, or parts of them (called fragments, see Section 10.2.3), or tuples, or even fields of single tuples. Figure 9.8 illustrates the hierarchy of resources that make up a database.

[image: image23.png]

[image: image24.png]ko |ky

L1

ky

b. delete ky: mery

To introduce different levels of lock granularity, an extension of the protocol of traditional lock is introduced, called hierarchical locking. This technique allows the transactions to lock items at given levels of the hierarchy. Thus it is possible for a transaction to obtain a lock for the entire database (as can be needed when we wish to make a copy of the entire database), or for a specific tuple or field,
The technique provides a richer set of primitives for lock requests; we rename read and write locks as follows:

· XL: exclusive lock. corresponds to the write-lock of the 2PL protocol;

· SL: shared lock, corresponds to the read-lock of the 2PL protocol.
The following three locks are specific to this technique:

· ISL: intention shared lock. This expresses the intention of locking in a shared manner one of the nodes that descend from the current node;

· IXL: intention exclusive lock. This expresses the intention of exclusively locking one of the nodes descending from the current node;
· SIXL: shared intention-exclusive lock. This locks the current node in a shared mode and expresses the intention of exclusively locking one of the nodes descending from the current node.
If, for example, we wish to place a write lock on a tuple of the table, and the hierarchy is that shown in Figure 9.8, then we must first request an IXL on the database level. When the request is satisfied, we can request an IXL for the relation and the fragment in which the desired tuple lies. When these locks are granted, we can request an XL for the particular tuple. Then when the transaction is ended, it will have to release the locks in reverse order to that in which they were granted, ascending the hierarchy one step at a time.

Here is a more formal description of the rules that must be followed by the protocol.

3. Locks are requested beginning at the root and moving down the tree.

4. Locks are released starting at the node locked by the smallest granularity and moving up the tree.

5. In order to request an SL or ISL on a node, a transaction must already hold an ISL or IXL lock on the parent node.

6. .In order to request an IXL, XL or SIXL on a node, a transaction must already hold an SIXL or IXL lock on the parent node.

7. The rules of compatibility used by the lock manager to decide whether to accept the lock request, based on the status of the node and on the type of request, are shown in Figure 9.9.
[image: image25.png]a insert ky: split

—

LI

ky

The choice of level of lock is left to the designer of the applications or to the database administrator, based on the characteristics of the transactions. Transactions, that carry out ‘localized’ modifications, having access to a limited set of objects, use a fine granularity. Transactions that carry out accesses to large quantities of data use a coarser granularity. The choice must be careful, as the use of too coarse a granularity can cause limitations to the parallelism (it increases the probability of the occurrence of a conflict), while the use of too fine a granularity means that a large number of locks must be requested one at a time, causing a great deal of work for the lock manager and exposing it to the risk of failure after the acquisition of many resources.
Lock functions offered by SQL-2 In SQL-.2 it is possible to define each transaction as read only or read write. The default case is read write. Read only transactions cannot modify the contents of the database (with the primitives insert, delete and update) or modify the contents of the schema (with the primitives create, drop and alter). Thus, they request only shared locks.
Furthermore, it is possible to indicate the level of isolation for each transaction, choosing among four possibilities: serializable, repeatable read, read committed. and read uncommitted. The default case is serializable; this level guarantees the maximum requirements of isolation. The three successive levels correspond to reduced requirements on the isolation of read operations. This simplifies the concurrency control for the transaction and ensures an increase in performance, but exposes it to possible inconsistencies. Note that in each case, the write requests the use of exclusive locks and of the protocol of strict 2PL.
To understand the difference between serializable and repeatable read we must discuss a further problem caused by concurrency. Let us consider a transaction that evaluates an aggregate value from the set of all the elements that satisfy a selection predicate. For example, the average grade of first-year students. Consider the case in which the aggregate value is evaluated twice, and between the first and second evaluations a new first-year student is inserted. In this case, the two average values read by the transaction could be different. This anomaly is not recognized by the concurrency control as defined in Section 9.2.3. The first read operation is not in conflict with the insertion operation, thus the two transactions are recognized as serializable, with the insertion transaction that precedes the read transaction.
In reality, the transactions are in conflict. To prevent the anomaly, it is necessary for the first transaction to impose a lock, which prevents any other transaction from modifying the data that satisfies the selection predicate. This new lock is called a predicate lock and can be created in the relational systems using mechanisms that lock particular data structures, which are known as indexes, and which will be introduced in Section 9.7. The serializable level allows for the use of predicate locks and thus also avoids this anomaly, while the repeatable read level does not introduce them and thus guarantees the level of isolation that is obtained by strict 2PL. Note that the term repeatable read is misleading, in that really the two readings of aggregate data discussed above can, when repeated, give different values.

Finally, let us look at the cases of read committed and read uncommitted. In both cases, the 2PL protocol is not used, and thus the serializability is not guaranteed. In the first case, the readings of data corresponding to an intermediate (uncommitted) state of a transaction are excluded, thus avoiding the anomaly of dirty read described in Section 9.2.2. This effect is obtained by a read lock request, which will, however, be immediately released after having been obtained. In the second case, no locks at all are used for read operations, thus even dirty reads are accepted.

The most developed systems make all four levels of isolation available to the programmer. It is up to the application programmer to choose which level to use. For the applications, for which the accuracy of the data read is essential (for example, financial applications), the highest level will be chosen. Where the accuracy is not important (for example, statistical evaluations in which approximate values are acceptable), lower levels will be chosen.

9.2.5 Deadlock management
Locking can generate a serious problem, deadlock, when we have a concurrent transaction, each of which holds and waits for resources held by others. Suppose that we have a transaction t1, which performs the sequence of operations r(x), w(y), and a second transaction t2, which performs the sequence of operations r(y}, w{x}. If the two-phase lock protocol is used, the following schedule can occur:

r_lock1(x), r _lock2(y), read1(x), read2(y), w_lock1(y), w_lock2(x)
At this point, neither of the two transactions can proceed and the system is locked. The deadlock occurs because t1 is waiting for the object y, which is blocked by t2, and in its turn, t2 is waiting for the object x. which is locked by t1. This situation is characteristic of all the systems in which mechanisms of locks on resources are used.

Let us evaluate the probability of such an event happening. Consider a table that consists of n different tuples, with identical access probability The probability of a conflict between two transactions that make a single access is 1/n; the probability of a deadlock of length 2, is equal to the probability of a second conflict of the same two transactions, and thus is equal to 1/n2. We will ignore the case of deadlocks generated by longer chains, because in this case the deadlock probability decreases exponentially with the increase of the length of the chain. Limiting ourselves to the case of deadlocks caused by pairs of transactions, the probability of conflict increases in a linear manner with the global number k of transactions present in the system. Further, it increases quadratically with the average number m of resources to which each transaction has access. The actual probability of the occurrence of deadlock is slightly higher than the simple statistical analysis above would lead us to believe, due to the dependencies that exist among data. (When a transaction has access to a given data item, it is more likely that it accesses other items that are semantically related.) In conclusion, we can assume that the probability of a deadlock in transactional systems is low, but not negligible. This consideration is confirmed by experiment.

Three techniques are commonly used to resolve the problem of deadlock:

8. timeout;

9. deadlock detection:

10. deadlock prevention.
Use of timeout Avoiding deadlocks by means of timeouts is very simple. The transaction remains in waiting for a resource for a pre-set time. If this time expires and the resource has not yet been granted, then the lock request is given a negative response. In this way, a transaction in deadlock is in any case removed from the waiting condition, and presumably aborted. Because of its simplicity, this technique is preferred by commercial DBMSs.
The choice of timeout values depends on the following trade-off. On one hand, a timeout that is too high tends to resolve deadlocks late, after the transactions involved in the lock have spent a long lime in wailing. On the other hand, a timeout that is too low runs the risk of defining as deadlock situations in which a transaction is waiting for a resource without causing an actual deadlock. This might needlessly kill a transaction and waste the work already carried out by the transaction.

Deadlock prevention Different techniques can be used to prevent the occurrence of a deadlock. One simple but impractical technique is based on requesting locks on all the resources necessary to the transaction at once. Unfortunately, this technique cannot be used because transactions do not normally know beforehand the resources to which they require access.

Another technique for the prevention of deadlock is to cause the transactions to acquire a timestamp. The technique consists of allowing the transaction ti to wait for a resource acquired by tj only if there is a determined relation of precedence between the timestamps of ti and tj (for example, i<j). In this way, about 50% of the requests that generate a conflict can wait in a queue, while in the remaining 50% of cases a transaction must be killed.

There are various options for choosing the transaction to kill. Let us first separate them into pre-emptive policies, and non-pre-emptive policies. A policy is pre-emptive if it resolves the conflict by killing the transaction that possesses the resource (to release the resource, which can thus be granted to a transaction). In the opposite case the police is non-pre-emptive and a transaction can be killed only in the act of making a new request.
One policy can be that of killing the transaction that is making a request when it has done less work than the transaction holding the lock. A problem with this policy is that a transaction accessing many objects that are often used by other transactions would be often in conflict, and being the one that has done least work, it would repeatedly be killed. In this situation there are no deadlocks, but there is a potential for starvation. To resolve the problem we must guarantee that each transaction cannot be killed an unlimited number of times. A solution that is often adopted is to maintain the same timestamp when a transaction is aborted and restarted, at the same time giving increasing priority to 'older' transactions. In this way the problem of starvation is solved.
This technique is never used in commercial DBMSs, as the probability of killing a transaction is about half of the probability of a conflict, while the probability of a deadlock is much lower that the probability of a conflict.

Deadlock detection This technique requires controlling the contents of the lock tables, as often as necessary in order to reveal possible block situations. The control can be carried out at predefined intervals, or when the timeout of a transaction occurs. The discovery of a deadlock requires the analysis of the waiting conditions among the various transactions, and in determining whether there is a cycle. The search for cycles in a graph, especially if carried out periodically, is practically feasible. For this reason some commercial DBMSs use this technique, which will be described in more detail in Section 10.3.2 in the context of distributed systems.

9.3 Buffer management

The efficient management of main memory buffers is an essential aspect of database systems. The buffer is a large area of the main memory are-allocated to the DBMS and shared among the various transactions. Recent years have seen memory costs fall, with the consequent allocation of larger and larger memory buffers to the DBMSs; in certain cases the entire DBMS can be copied and managed in the main memory.

9.3.1 Architecture of the buffer manager
The buffer manager deals with the loading and unloading of pages of the main memory to the secondary memory. It provides primitives for access to the pages present in the buffer, called fix, use. unfix, flush and force. It then simultaneously creates input/output operations in response to these primitives, so long as the shared access to the data is allowed by the scheduler (generally a lock manager). The architecture of the subsystem is illustrated in Figure 9.10.
[image: image26.png]Peter
A
+ First level
\
v
Mavis Rick
)
15econd level
)
¥
Babs || David| Mavis. = oy [

[image: image27.png]k) i) i) otk efk) i) tlkg) tlks) k) tiky)

The buffer is organized in pages, which are either equal to or a multiple of the size of the input/output blocks used by the operating system for reading from and writing to secondary memory. The size of pages ranges from a few Kbytes to about a hundred Kbytes. When a page of the secondary memory is present in the buffer, the DBMS can carry out its reading and writing operations directly on it. Given that the access times to main memory are in the order of six orders of magnitude faster than access times to secondary memory, it is clear that having access to the pages of the buffer represents an important increase of performance.

The policies of buffer management are similar to those of main memory management from the point of view of the operating systems, and they obey the same principle, called data locality, based on which of the currently referenced data has a greater probability of being referenced in the future. In addition, a well-known empirical law says that only 20% of data is typically accessed by 80% of applications. This law means that generally the buffers contain the pages on which most of the accesses are made.

The buffer manager supports a directory, which describes the current contents of the buffer. For each page loaded, it indicates the physical file and the corresponding block number. Note that, as the size of the buffer increases, the importance of managing this directory efficiently also increases.

9.3.2 Primitives for buffer management
The operations supported by the buffer manager to organize the loading and unloading of pages are the following.

· The fix primitive is used to request the access to a page and to load it into the buffer. At the end of the operation, the page is loaded and valid, that is, allocated to an active transaction; a pointer to the page is returned to the transaction. The execution of the primitive requires read operations from the secondary memory only when the chosen page is not already resident in the buffer.

· The use primitive is used by the transaction to gain access to the page previously loaded in the memory, confirming its allocation in the buffer and its status as a valid page.

· The unfix primitive indicates to the buffer manager that the transaction has terminated the use of the page, which is no longer valid.

· The force primitive synchronously transfers a page from the buffer manager to the secondary memory. The requesting transaction remains suspended until the end of the execution of the primitive, which consists of physical write operations to the secondary memory.

In practice, the primitives fix and use allow the loading into the buffer and the reading of data and the primitive force is used by the transactions to write data in the secondary memory. Furthermore, the flush primitive is used by the buffer manager itself to transfer to the secondary memory the pages that are no longer valid and remain inactive for a long time, either during the fix operation relating to other pages, or asynchronously and independently of the active transactions Asynchronous transfers happen when the buffer manager is not occupied by other operations such as fix or force. They make pages of the buffer available, which become free and can be immediately used by successive fix operations. In summary, the writing of pages of the buffer into the secondary memory can be synchronous, commanded by the transactions, or asynchronous, commanded by the buffer manager and independent from the transactions.

The fix primitive operates as follows.

11. First it searches for the required page among those already present in the memory, after the unfix of other transactions. If the search has a positive result, the operation is concluded and the address of the page is granted to the requesting transaction. Due to the principle of locality, this happens quite often.

12. Otherwise, a page in the buffer is chosen for loading the secondary memory page into it. If a free page exists, it is selected. Otherwise, the page is selected from among those that are not free; that page is called victim. As we further discuss next, the selection can consider only non-valid pages (and fail if no page is available), or else consider also valid pages allocated to other transactions (and in such case it never fails). If a page that is not free is chosen, it must in any case be rewritten in the secondary memory, invoking the flush operation.

9.3.3 Buffer management policies
We will now describe two pairs of alternative policies for buffer management.
· The steal policy, used during the execution of the fix operation, allows the buffer manager to select an active page allocated to another transaction as a victim, while a no-steal policy excludes this possibility. Note that with the steal policy, the pages of active transactions can be written in the secondary memory by the buffer manager before the end of the transaction. In particular, we might have to rewrite the initial value of the page when the transaction carries out an abort.
· The force policy requires that all the active pages of a transaction are transcribed in the secondary memory when the transaction performs a commit. The no-force policy entrusts the writing of the pages of a transaction to the asynchronous mechanisms of the buffer manager. This latter makes it possible for the write to come well after the end of the transaction, because of flush operations or when a page is a chosen victim.
The no-steal/no-force pair of policies is preferred by the DBMSs, as the no-steal policy is the easiest to carry out and the no-force policy guarantees the higher efficiency. We will return to this subject in the next section, which deals with reliability.
There is also the possibility of 'anticipating' the loading and unloading times of the pages, by means of pre-fetching and pre-flushing policies. The former means loading the pages before the actual request by the transaction. when the pattern of access to the pages of the database is known in advance. The latter means unloading the pages before the time when a page is chosen as a victim.
9.3.4 Relationship between buffer manager and file system
The file system is a module made available by the operating system. The DBMS uses its functionality. However, contrary to appearances, the relationship between the functions delegated to the file system and those handled directly by the DBMS is not simple. There was a long period in which the functionality offered by the operating systems could not guarantee availability, reliability or efficiency, for which reason the DBMSs had to implement their own input/output functions. Today, DBMSs use the file system but create their own abstraction of the files, in order to ensure the efficiency (by means of the buffers) and robustness (by means of the reliability system). It is quite possible that in the future this functionality will migrate towards the operating system, 'exporting' the functionality of the database beyond the DBMS. There follows a brief description of the functionality of the file system, which serves to create links between this subject and operating systems. Listed below are the functions traditionally offered by the file system and exploited by the DBMS.

· The creation (create) and removal (delete) of a file. In general, at the time of creation an initial number (minimum) of blocks is allocated to a file. which can be dynamically extended (extend)

· The opening (open) and closing (close) of a file, necessary to load the information that describes the file in appropriate main memory structures. The opening of a file normally allocates a numerical identifier (fileid) to the name of the file (filename)
· The primitive read (fileid, block, buffer) for the direct access to a block of a file, identified by the first two parameters, which is transcribed in the page of the buffer indicated using the third parameter.
· The primitive read_seq(fileid, f-block, count, f-buffer) for sequential access to a fixed number (count) of blocks of a file, identifying the first block of the file by means of the second parameter and the first page of the buffer by means of the last parameter.

· The dual primitives write and write_seq, characterized by exactly the same parameters as the corresponding read primitives.

Furthermore, other primitives allow for the structuring of the secondary memory by introducing directories, to which the files are allocated. The file system is responsible for knowing the structure of the secondary memory in directories and the current situation of secondary memory use. It must identify which blocks are free and which are allocated to files, to be able to respond to the primitives.

9.4 Reliability control system

The architecture described up to now allows for the concurrent and efficient reading and writing of blocks of the secondary memory. At this point, we must concern ourselves with reliability, one of the main goals in database management. The reliability control system ensures two fundamental properties of transactions, defined in Section 9.1.1: atomicity and durability. The system is responsible for the writing of the log: a permanent archive, which registers the various actions, carried out by the DBMS. As we shall see, each write action on the database is protected by means of an action on the log, so that it is possible to 'undo' the actions following malfunctions or failures preceding the commit, or 'redo' these actions whenever their success is uncertain and the transactions have performed a commit.

To give an indication of the role of the log we can make use of two metaphors, one mythological and the other based on a popular fable. The log can be likened to Arianna's thread', used by Theseus to find his way out of the Minotaur's palace. In this case, by rewinding the log, Theseus ran 'undo' the path he has taken. A similar role is given by Hansel and Gretel to the crumbs of bread left along the way through the forest, but in the Grimm's fairy tale the crumbs were eaten by the birds, and Hansel and Gretel were lost in the forest. This analogy shows that, in order to be able to carry out its role effectively, the log must be sufficiently durable.
9.4.1 Architecture of the reliability control system
[image: image28.png]i

N

[image: image29.png]

The reliability control system (see Figure 9.11) is responsible for executing the transactional commands: begin transaction, commit work, rollback work, abbreviated where necessary to B:begin, C:commit, A:abort, and for executing the primitives for recovery after malfunctions. These primitives are known respectively as warm restart and cold restart. Further, the reliability control system receives requests for reading and writing pages, which are transferred to the buffer manager, and generates other requests for reading and writing of pages necessary to ensure durability and resistance to failure. Finally, the system prepares the data required for doing recoveries after failures, in particular, by creating checkpoints and dumps.
Stable memory To be able to operate, the reliability control system must make use of a stable memory, that is. a memory that is failure-resistant. Stable memory is an abstraction, in that no memory can have zero probability of failure. However, mechanisms of replication and robust writing protocols can bring such a probability close to zero. The mechanisms of reliability control are defined as if the stable memory were immune to failure. A failure of the stable memory would be considered catastrophic and we assume it to be impossible, at least in this section.

The stable memory is organized in different ways, depending upon the specific requirements of an application. In some applications, it is assumed that a tape unit is stable. In other cases, it is assumed that a pair of devices is stable, for example, a tape unit and a disk storing the same information. A typical organization of a stable memory uses, in place of a single disk unit, two disk units referred to as 'mirrored'. The two disks contain exactly the same information and are written with a 'careful writing' operation, which is held to be successful only if the information is recorded on both the disks. In this way the stable information is also 'in line' (available on a direct access device). |

9.4.2 Log organization
The log is a sequential file managed by the reliability control system, written in the stable memory. The actions carried out by the various transactions are recorded in the log, in chronological order. For this reason, the log has a top block, the last one to be allocated to the log. The records in the log are written sequentially to the top block; when it is full another block is allocated to the log and becomes the top block.

· Transaction records describe the activities carried out by each transaction, in chronological order. For this reason, each transaction inserts a begin record in the log, followed by various records related to actions carried out (insert, delete, update), followed by a record of either commit or abort. Figure 9.12 shows the sequence of records present in a log. The records for the transaction t1 are highlighted, in a log that is also written by other transactions. The t1 transaction carries out two updates before successfully completing with a commit.
· [image: image30.png]Left table

i

€ |asbuvews=

|

[image: image31.png]

 System records indicate the carrying out of the operations dump (rare) and checkpoint (more frequent), which we will illustrate in more detail later. Figure 9.12 highlights the presence of a dump record and of various checkpoint records in the log

Structure of log records Listed below are the log records that are written to describe the action of a transaction t1.
· The begin, commit and abort records contain the type or record and the identifier t of the transaction.

· The update records contain the identifier t of the transaction, the identifier O of the object on which the update takes place and then two values BS and AS, which describe respectively the value of the object O before the modification (the before state) and after the modification (the after state). In this section we will assume for the sake of simplicity that AS and BS contain complete copies of the modified pages, but in practice this information is much more compact.

· The insert and delete records are similar to those of update; in the insert record there is no before state, while in the delete records there is no after state.

From here on we will use the symbols B{T), A(T) and C{T) to denote begin, abort and commit records and U(T, O, BS. AS), I(T, O, AS) and D{T, O, BS) to denote update, insert and delete records.

Undo and redo The log records make it possible to undo and redo the respective actions on the database.

· The undo primitive: to undo an action on an object O it is sufficient to copy the value BS into the object O. The insert is undone by deleting the object O.
· The redo primitive: to redo an action on an object O it is sufficient to copy the value AS into the object O. The delete will be redone by deleting the object O.
Given that the primitives undo and redo are defined by means of a copy action, this counts as an essential property, known as the idempotence of undo and redo, for which the carrying out of an arbitrary number of undos and redos of the same action is equivalent to the carrying out of such actions only once. In fact:

undo(undo{A)) = undo(A) redo(redo(A)) = redo(A)
The property is very important because, as we shall see, there could be errors during the recovery operations, which cause the repetition of undo and redo.
Checkpoint and dump A checkpoint is an operation that is carried out periodically, with the objective of recording which transactions are active and of updating secondary memory relative to all completed transactions. During the execution of the checkpoint, all the pages written by transactions that have already carried out the commit or abort are transferred from the buffer into secondary memory. These operations are carried out by the buffer manager, which executes suitable flush operations. After having initiated a checkpoint, no commit operations are accepted by the active transactions. The checkpoint ends by synchronously writing (forcing) a checkpoint record, which contains the identifiers of the active transactions. In this way, we are sure that the effects of the transactions that have carried out a commit are permanently recorded in the database. At the same time, the transactions listed in the checkpoint have not yet performed a commit or an abort. This schema can be optimized by DBMSs for improving performance without violating the basic checkpointing principles described above.

A dump is a complete copy of the database, which is normally created when the system is not operative. The copy is stored in the stable memory, typically on tape, and is called backup. At the conclusion of the dump operation, a dump record is written in the log, which signals the presence of a copy made at a given time and identifies the file or device where the dump took place. After this, the system can return to its normal function.

Hereafter, we will use the symbols DUMP to denote the dump record and CK(T1, T2,, Tn) to denote a checkpoint record, where T1 T2,..., Tn denote the identifiers of the active transactions at the time of the checkpoint.

9.4.3 Transaction management
During the normal functioning of the transactions, the reliability control system must follow two rules, which define the minimum requirements that allow the accurate recovery of the database in case of failures.

· The WAL rule (write-ahead log) imposes the constraint that the before-state parts of the log records are written in the log (that is, in the stable memory) before carrying out the corresponding operation on the database. This rule makes it possible to undo the writing already done in the secondary memory by a transaction that has not yet carried out a commit. That is, for each update, the preceding value written is made available in a reliable manner.

· The Commit-Precedence rule imposes the constraint that the after-state parts of the log records are written in the log (that is, in the stable memory) before carrying out the commit. This rule makes it possible to redo the writing already decided by a transaction that has carried out the commit, whose modified pages have not yet been transferred from the buffer manager to the secondary memory.

In practice, even if the rules refer separately to the before state and after-state of the log records, in many cases both of the components of the log record are written together. For this reason, a simplified version of WAL imposes the constraint that the log records art written before the corresponding records in the database, while a simplified version of the commit-precedence rule imposes the constraint that the log records are written before the execution of the commit operation.
The atomic outcome of a transaction is established at the time when it writes the commit record in the log synchronously, using the force primitive. Before this event, a failure is followed by the undo of the actions, so reconstructing the original state of the database. Alter this event, a failure is followed by the redo of the actions carried out to reconstruct the final state of the transaction. The writing of an abort record in the log atomically defines the decision to abort the transaction, either produced by the 'suicide' of the transaction or imposed by the system. Given, however, that it does not modify the decisions of the reliability control system, the abort record can be simply written asynchronously into the top block of the log, which is contained in the buffer. This block can be rewritten to the log with a flush operation, or with a force operation caused by another transaction.

Joint writing of log and database The WAL and Commit-Prccedence rules impose the following protocols for the writing of the log and of the database, described in Figure 9.13. Let us suppose that the actions carried out by the transactions are updates (they could also be inserts or deletes). We distinguish three schemas:

· In the first schema, illustrated in Figure 9.13-a, the transaction first writes the record B(T), then carries out its update actions by writing first the log records and then the pages of the database, which thus changes from the value BS to the value AS. These pages are written (either with flush primitives or with explicit requests for force) from the buffer manager to secondary memory before the commit, which is always implemented with a synchronous writing (force) in the log. In this way, at the commit, all the pages of the database modified by the transaction are already written in the secondary memory. This schema does not require redo operations

· In the second schema, illustrated in Figure 9.13-b, the writing of log records precedes that of the actions on the database, which, however, happen only after the decision to commit and the consequent synchronous writing of the commit record in the log. This schema does not require undo operations.

· The third schema, more general and commonly used, is illustrated in Figure 9.13-c. According to this schema, the writing in the database, once protected by the appropriate writing on the log, can happen at any time with regard to the writing of the commit record in the log. This schema allows the buffer manager to optimize the flush operations; however, it requires both undo and redo.
Note that all three protocols respect the two rules (WAL and Commit-Precedence) and write the commit record synchronously. They differ only regarding the time in which the pages of the database are written.

We have seen which actions must be carried out in the log in order to support failure recovery. These actions have a cost, comparable to the cost of updating the database. The use of the above protocols represents a sensitive overloading of the system, but cannot be avoided because of the need for 'acid' properties of the transactions. Log operations can be optimized, for example by writing several log records in the same page, or by writing them on the page in which the commit record of the transaction will be written, and then using only one force operation. Other optimization techniques allow a group-commit of transactions: various commit records are placed on the same page of the log and written with a single force, expected by all the requesting transactions. Finally, a transaction system with a high number of transactions per second (tps) can also resort to parallel schemas for the writing of the log.
9.4.4 Failure management

Before studying the mechanisms for failure management, it is appropriate to classify the types of failures that can occur in a DBMS. Failures are divided into two categories.

· System failures These are failures caused by software bugs, for example of the operating system, or by interruptions of the functioning of the devices, due, for example, to loss of power. This can cause a loss of the contents of the main memory (and thus all the buffers), although maintaining the contents of the secondary memory (and thus of the database and the log).

· Device failures These are failures of secondary memory devices (for example, disk head crashes), which cause the loss of secondary memory contents. Given our assumption that the log is written in the stable memory, these failures should affect only the database content; device failures causing the loss of the contents of the log are therefore classified as catastrophic events, for which there is no remedy.
The ideal failure model is called fail-stop. When the system identifies a failure, whether of the system or of a device, it imposes a complete halt of transactions, followed by a restart of the system {boot). This is known as a warm restart in case of system failure and cold restart in case of device failure. At the end of the restart procedure, the system can again be used by the transactions. The buffer is empty and can begin to reload pages from the database or from the log. The model of behaviour is illustrated in Figure 9.14.
With this model, the failure is an instantaneous event that happens at a certain time in the operation of the database. Let us look at the objectives of the restart process. There are potentially active transactions at the time of failure. That is, we do not know whether they have completed their actions on the database (as the buffer manager has lost all useful information). These are classified into two categories, based on information present in the log. Some of them have committed, and for these it is necessary to redo the actions in order to guarantee durability. Others have not committed, and for these it is necessary to undo the actions, as the database must be left in its state before the execution of the transaction. Note that it would be possible, in order to simplify the restart protocols, to add another record to the log, known as the end record, written when the transcription operation (flush) of all the pages of a transaction is terminated. This allows the identification of a third class of transaction, for which it is not necessary either to undo or to redo the actions. However, in general, the end record is not used by DBMSs, so as not to complicate the management of transactions. From here on we will assume a fail-stop failure model and the absence of an end record.
Warm restart The warm restart is divided into four successive phases.

13. The last block of the log is accessed, that is, the one that was at the top at the time of failure, and the log is traced back until the most recent checkpoint record.

14. Decisions are made about which transactions must be redone or undone. Two sets are constructed. called UNDO and REDO, containing transac​tion identifiers. The UNDO set is initially equal to the active transactions at the checkpoint: the REDO set is initially empty. The log is then traced forward, adding to the UNDO set all the transactions for which there is a begin record, and moving from the UNDO set to the REDO set all the identifiers of the transactions for which a commit is present. At the end of this phase, the UNDO and REDO sets contain respectively all the identifiers of the transactions to undo or redo.

15. The log is traced back undoing all the transactions in the UNDO set, until the first action of the 'oldest" transaction in the two sets, UNDO and REDO, is found. Note that this action could precede the checkpoint record in the log.
16. Finally, in the fourth phase, the redo actions are applied, in the order in which they are recorded in the log. In this way, the behavior of the original transactions is replicated exactly.
This mechanism ensures atomicity and durability of the transactions. As far as atomicity is concerned, it guarantees that the transactions in progress at the time of failure leave the database either in the initial state or in the final one. Concerning durability, we know that the pages in the buffer relating to transactions completed but not yet transcribed to the secondary memory are actually completed by a write to the secondary memory. Note that each 'uncertain' transaction that is present in the last checkpoint record or started after the last checkpoint is either undone or redone. It is undone if its last record written in the log is a transaction or an abort record, and redone if its last record written in the log is a commit record.

Let us look at an example of the application of the protocol. Suppose that in the log the following actions are recorded: B(T1), B(T2), U(T2, O1, B1, A1), I(T1,, O2,, A2), B(T3), C(T1), B(T4), U(T3, O2,, B3, A3),, U(T4, O3, B4, A4),, CK(T2, T3, T4), C(T4), B(T5), U(T3,, O3, B5 A5), U(T5, O4, B6, A6), D(T3, O5,, B7), A(T3), C(T3), I(T2, O6, A8), Following this a failure occurs.
The protocol operates as follows.
17. The checkpoint record is accessed; UNDO = {T2, T3, T4}, REDO = {}.
18. Then the log record is traced forward, and the UNDO and REDO sets are updated:

(a) C{T4): UNDO = { T2, T3}, REDO = {T4}
(b) B(T5): UNDO= {T2,T3,T5}, REDO= {T4}
(c) C(T5): undo ={T2, t3}, REDO = {T4,T5}
19. Following this. the log is traced back to the action U(T2, O1, B1, A1) executing the following sequence of undo operations:

(a) Delete (O6)

(b) Re-insert (O5 = B7)
(c) O3 = B5
(d) O2 = B3
(e) O1= B1
20. Finally, the redo operations are carried out:
(a) O3=A4(note:A4=B5!)
(b) O4=A6
Cold restart The cold restart responds to a failure that causes damage to a part of the database. It is divided into three successive phases.
21. During the first phase, the dump is accessed and the damaged parts are selectively copied from the database. The most recent dump record in the log is then accessed.
22. The log is traced forward. The actions on the database and the commit or abort actions are applied as appropriate to the damaged parts of the database. The situation preceding the failure is thus restored.
23. Finally, a warm restart is carried out.

This schema reconstructs all the work relating to the damaged part of the database, and therefore guarantees the durability and atomicity that existed at the time of the failure. The second phase of the algorithm can be optimized, for example by carrying out only the actions of successfully committed transactions.
9.5 Physical access structures

Physical access structures are used for the efficient storage and manipulation of data within the DBMS. In general, each DBMS has a limited number of types of access structure available. For example, in relational systems, indexes are defined by the designer using DDL instructions. Access structures can also be found outside DBMSs, for example, they may be coded within applications that do not use a DBMS. In this section, we will consider sequential, hash-based, and tree-based data structures.
9.5.1 Architecture of the access manager
The access manager is responsible for transforming an access plan, produced by the optimizer, into an appropriate sequence of accesses to the pages of the database. The access manager supports access methods, that is, software modules providing data access and manipulation primitives for each physical access structure; access methods can select the block of a specific file that must be loaded into the memory, passing this information to the buffer manager. For example, sequentially organized data can be scanned by reading the first block and then the successive blocks, until the last.
The access methods also know the organization of the tuples on the pages, and thus they support primitives for the reading and manipulation (insertion, update, deletion) of tuples within pages; for instance, they can return the value of an attribute from all the tuples that are stored in a given page. An architecture that includes these access methods is shown in Figure 9.15. The diagram shows a reference architecture without entering into details of the primitives offered by each access method. Below, we will first look at how the tuples are organized on the page, and we can then examine in detail the most important access methods.
9.5.2 Organization of tuples within pages
Although each access method can have its own page organization, some access methods (sequential and hash-based) have characteristics in common, which we highlight in the following discussion. On each page, there is both useful information and control information. The useful information is the actual application-specific data; the control information allows access to the useful information. We will look at them in detail with reference to Figure 9.16.

· Each page, as it coincides with a block of secondary memory, has an initial part (block header) and .a final part (block trailer) containing control information used by the file system).
· Each page, as it belongs to an access structure, has an initial part (page header) and a final part (page trailer) containing control information about the access method. This information will typically contain the identifier of the object (table, index, data dictionary, etc.) contained on the page, pointers to successive or preceding pages in the data structure, number of items of useful elementary data (tuples) contained on the page, and quantity of available memory (adjacent or non-adjacent) available on the page.
· Each page has its page dictionary, which contains pointers to each item of useful elementary data contained in the page and a useful part, which contains the data. In general, the page dictionary and the useful data grow as opposing stacks. leaving free memory in the space between the two stacks.
· Finally, each page contains a checksum, to verily that the information in it is valid.
Some page managers do not allow the separation of a tuple on more than one page and in this case, the maximum size of a tuple is limited to the maximum space available on a page. Most page managers, on the other hand, allow the distribution of tuples over several pages.

Furthermore, in some cases all the tuples have the same size. In this way, the page structure is simplified, but there is a risk of wasting space on the page. As we shall see, some access methods are characterized by tuples of fixed size. If the tuples can be of different lengths, the page dictionary contains an indication of the offset of each tuple relative to the beginning of the useful part and of each value of the various fields present in the tuple relative to the beginning of the tuple itself. Finally, in some cases it is possible to have tuples belonging to different relations on the same page.

The primitives offered by the page manager are the following.

· Insertion and update of a tuple, which does not require a reorganization of the page if there is sufficient space to manage the extra bytes introduced. Otherwise, the operations must be preceded by a reorganization of the page, which has limited cost when it takes place in the main memory, but could sometimes need access to other blocks or the allocation of new blocks.
· Deletion of a tuple, which is always possible and is often carried out without reorganizing the information on the page (that is, without reducing the stack relative to the useful part, but simply marking the tuple as 'invalid').

· Access to a particular tuple, identified by means of the value of the key or based on its offset, present in the dictionary.

· Access to a field of a particular tuple, identified according to the offset and to the length of the field itself, after identifying the tuple by means of its key or its offset (as described above).

Note that tree structures have a different page organization, which will be illustrated in Section 9 5 5.
9.5.3 Sequential structures
We will now move on to analyze the way in which the pages are linked to each other in data structures, starting with sequential organization. The sequential structures are characterized by a sequential arrangement of tuples in the secondary memory. The file is made up of various blocks of memory, and the tuples are inserted into the blocks according to a sequence. Depending on the application, the sequence can belong to one of a variety of types:

· in an entry-sequenced organization, the sequence of the tuples is dictated by their order of entry;

· in an array organization, the tuples are arranged as in an array, and their positions depend on the values of an index (or indexes);
· in a sequentially ordered organization, the sequence of the tuples depends on the value assumed in each tuple by a field that controls the ordering, known as a key field.
Let us look at some further characteristics of each of the above organizations.

Entry-sequenced sequential structure An entry-sequenced sequential structure is optimal for the carrying out of sequential reading and writing operations. Given that the tuples are not in any pre-established order, the most typical method for gaining access to their contents is by means of a sequential scan. This organization uses all the blocks available for files and all the spaces within the blocks, and thus the scan is particularly efficient.

The initial operations for the loading and insertion of data happen at the end of the file and in sequence. This is also highly efficient, as it is enough to use a pointer on the last tuple to be able to carry out the operation. More problems are caused by the update or delete operations. Given that the tuples are arranged one after another in sequence, each update that represents an increase of the size of the tuple cannot be easily managed 'in place'. In addition, each deletion causes a potential waste of memory, because it is typically implemented by leaving space unused.

Array sequential structure An array sequential structure is possible only when the tuples are of fixed length. In this case a number n of adjacent blocks are allocated and each block is given a number m of available slots for tuples, giving rise to an array of n (m slots overall. Each tuple is given a numeric value i, which functions as an index (that is. the tuple is placed in the i-th position of the array). For the initial loading of the file, the indices are obtained simply by increasing a counter. However, insertions and deletions are possible. The deletions create free slots; the insertions may be carried out within the free slots or at the end of the file. Typical primitives guaranteed by this organization are as follows. Firstly, there is read-ind (reading of the tuple corresponding to a determined index value). Next, there are insert-at, insert-near and insert-at-end (insertion in a specific free slot, or in the first successive free slot, or finally at the end of the file). Finally, there are the intuitive update-ind and delete-ind.

Ordered sequential structure Sequential ordering allocates to each tuple a position based on the value of the key field. This structure, although classic and well understood, has recently fallen out of use, as its management costs are high. It is based on the concept of giving a physical ordering to the tuples that reflects the lexical ordering of the values present in the key field. Thus, it favors those transactions that require access to the tuples of a table based on the key.

Historically, ordered sequential structures were used on sequential devices (tapes). They were constructed by batch processes, which were responsible for putting the records in order based on the key, and loading them in sequence into a file, called the main file. The modifications were collected in differential files, also ordered according to the key value, and periodically processed by batch processes, which were responsible for merging the main file and the differential file, obtaining a new version of the main file. Obviously, a periodic merge is unacceptable in the present DBMS technology.

Having rejected this technique let us look instead at which options are still possible for the management of a sequentially ordered file. The main problem with this structure is the necessity for inserting new tuples (or changing them. when the change brings about an increase in the space needed), as these modifications represent a reordering of the tuples already present. The cancellations can be created in situ, making the corresponding positions in the memory invalid (and unused). To avoid these reorderings the following techniques are available.

· We can leave a certain number of slots free at the time of first loading. This will allow us to retain the sequential organization using 'local reordering' operations.

· We can integrate the sequentially ordered files with an overftow file, dedicated to the management of new tuples, which require extra space. The blocks of the overflow file are linked among themselves in an overflow chain. Each chain starts from a block of the sequentially ordered file. Thus, the sequential searches must be intertwined with the analysis of the overflow blocks. This technique is also used for hash-based structures, described below.

9.5.4 Hash-based structures
Hash-based structures ensure an associative access to data, in which it is possible to make efficient access to data based on the value of a key field. Keys of hash-based and tree structures have nothing to do with primary keys of the relational model; they can be composed of an arbitrary number of attributes of a given table. A hash-based structure is created by allocating a number B of blocks to a file, often adjacent. Efficient functioning is obtained by making the file larger than necessary, and thus not filling all the blocks. This access method makes use of a hashing function, which once applied to the key, returns a value between zero and B-1. This value is interpreted as the position of the block in the file.

The structure is ideal where the application needs to access the tuple that contains a specific key value. The address produced by the hashing function is passed to the buffer manager and gives direct access to the block thus identified. Similarly, the writing of a tuple that contains a determined key value is carried out in that block. Thus, in the absence of collisions (which we will describe below), this access method allows the reading and writing of tuples (provided that the value of the access key is known) using a single operation of input/output to localize the block relevant to the operation.

The primitive that allows the transformation of a key value into a block number has the format: hash(fileid,Key) :Blockid. It receives the name of the file and the key value as parameters, and returns a block number. The corresponding function offered by the system consists of two parts.

· A first operation, known as folding, transforms the key values so that they become positive integer values, uniformly distributed over a large range. An example of folding consists of separating the key into various sections, each four bytes long. and then computing the exclusive OR (XOR) of the bits of all the sections. This produces four bytes, to be interpreted as a positive binary number between zero and 232 - 1.
· The successive hashing operation transforms the positive binary number into a number between zero and B - 1. for example, a simple hashing function is obtained by the 'modulo B' division. A more complex function requires raising 2 to the power of the number obtained after the folding. Log2B bits of this number are then taken and interpreted as an internal positive binary number, which is used as the block number.
This technique works better if the file is made larger than necessary. More precisely, if T represents the number of tuples expected for the file and F the average number of tuples stored in each page, then a good choice for B is given by T/(0.8 (F), thereby using only 80% of the available space for storing tuples. This choice is justified by statistical considerations, which are beyond the scope of this text.
The main problem of structures managed by hashing is that of collisions, that is, situations in which the same block number is returned by the function, based on two different values of the key. Each page can contain a maximum of F tuples. However, when the value of F is exceeded, it is then necessary to resort to a different technique to allocate and retrieve the tuples that find their blocks occupied. We will try, first, to quantify the probability of such an event. If the tuples are uniformly distributed, the probability p(t) that an arbitrary page receives t tuples is equal to the probability that the hashing function produces exactly t identical values and T - t different values: p(t) is given by the following formula:

[image: image32.png]IDFS?T
@b 5og T moameg s ernEgR
b~ vt Sl 0

ey Myaly tieemen b
4 [}]]

-n:ql -n:ql .-'w) n-'ql

, where
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

t

T

 denotes the binomial coefficient
The probability p of having more than F collisions is equal to:

[image: image3.wmf]å

=

-

=

F

i

t

p

p

0

)

(

1

When an excessive number of collisions appear and the page capacity is exhausted, the solution is the construction of the overflow chain. These chains originate in the blocks in which an excessive number of collisions appear. The table in Figure 9.17 shows the average length of the overflow chain as a function of the ratio T/(F (B) and of the average number F of tuples per page. Obviously, the presence of overflow chains slows the search time, as it is necessary to request an input/output operation for each block in the chain. In particular a search has a positive result when the requested tuple is found, and a negative result at the end of the scan of the overflow chain. An insertion will take place in the first slot available, sometimes at the end of the chain.

In conclusion, note that hashing is the most efficient technique for gaining access to data based on queries with equality predicates, but is extremely inefficient for queries with interval predicates, that is, queries that require access to intervals of values.
9.5.5 Tree structures
Tree structures, called B-trees or B+ trees, are most frequently used in relational DBMSs. They allow associative access, that is, access based on a value of a key without necessarily placing constraints on the physical location of the tuples in specific positions in the file. A key may correspond to several attributes, but for simplicity we will consider keys corresponding to one attribute. Note that the primary key of the relational model and the key used by a tree structure are different concepts. The first refers to an abstract property of the schema and the second to a property of the physical implementation of the database.

When a user specifies in DDL an index relating to an attribute or a list of attributes of a table, the system generates appropriate tree structures for physical data management. Each tree structure is characterized by a root node, a number of intermediate nodes, and a number of leaf nodes. Each node coincides with a page or block at the file system and buffer manager levels. The links between the nodes are established by pointers, which link the blocks between themselves. In general, each node has a large number of descendants, the exact number depending on the block size; each node may have tens or even hundreds of descendants. This allows the construction of trees with a limited number of levels. In which the majority of pages are occupied by leaf nodes. Another important requirement for the successful functioning of these data structures is that the trees be balanced; when a tree is perfectly balanced, the lengths of the paths from the root node to the leaf nodes are all equal. In this case, the access times to the information contained in the tree are almost constant.

Node contents and search techniques The typical structure of each intermediate node of a tree (including the root) is shown in Figure 9.18. Each node contains F keys (in lexicographic order) and F + 1 pointers. Each key Kj, 1 (j (F. is followed by a pointer Pj; K1 is preceded by a pointer P0. Each pointer addresses a sub-tree:
· the pointer P0 addresses the sub-tree that contains the information about the keys with values less than K1;
· the pointer PF addresses the sub-tree that contains the information about the keys with values greater than or equal to KF;
· each intermediate pointer Pj, 0 < j < F. addresses a sub-tree that contains all the information about the keys K included in the Interval Kj (K < K.j+1.
The value F + 1 is called the fan-out of the tree. F depends on the size of the page and on the amount of space occupied by the key values and pointer values in the 'useful part' of a page.

The typical search primitive made available by the tree manager allows associative access to the tuple or tuples that contain a certain key value V. The search mechanism consists of following pointers starting from the root. At each intermediate node:

· if V < K1 follow the pointer P0
· if V (KF follow the pointer PF;
· otherwise, follow the pointer Pj such that Kj (V< Kj+1.
The search continues in this way to the leaf nodes of the tree, which can be organized in two ways.
· In the first case. the leaf node contains the entire tuple. The data structure obtained in this case is called key-sequenced. In it. the position of a tuple is determined by the value assumed by its key field. However, as we shall see, it is quite simple to insert or cancel tuples in this structure. The position is not produced by an algorithm (as in the case of the relative sequential structure or hashing), but can vary dynamically.
· In the second case, each leaf node contains pointers to the blocks of the database that contain tuples with specified key values. The data structure that is obtained in this case is called indirect. The tuples can be anywhere in the file, and thus this mechanism makes it possible to access tuples allocated by means of any other 'primary' mechanism (for example, entry-sequenced, hash-based, or key-sequenced).
In some cases, the index structure is not complete. That is. not all the key values are included in the index. In this case, the index is called sparse. A sparse index can be constructed only on a sequentially ordered structure, using indexes to locate a key value close to the value being sought, and then to carry out a sequential-type search.
A key-sequenced structure is generally preferred for the creation of the so-called primary index of each table, that is, the one that is usually defined on the primary key. The leaves generally contain a number of tuples less than F because the size of a tuple is generally larger than the sum of the dimensions of a key and a pointer. However, in this case the leaf nodes do not contain pointers to data pages.
Indirect structures are preferred in order to create the secondary indexes, which can be either unique or multiple. In the first case, only one tuple is associated with each index key. In the second case various tuples can correspond to each index key; each tuple is reached by means of a different pointer placed in suitably organized leaf nodes.
The insertion and cancellation of tuples also produce updates to the tree structure, which must reflect the situation generated by a variation in the values of the key-field. An insertion does not cause problems when it is possible to insert the new key value into a leaf of the tree. whose page has a free slot. In this case, the index remains unchanged, and the new key value is found by simply applying the search algorithm. When the page of the leaf has no available space, however, a split operation is necessary. The split divides the information already present in the leaf plus the new information into two equal parts, allocating two leaf nodes in place of one. This operation requires a modification of the arrangement of the pointers, shown in Figure 9.19.a. Note that a split causes an increment in the number of pointers on the next (higher) level in the tree. In this way, it can again exceed the capacity of a page. causing a further split. In practice, the split can continue to happen in this way as far back as the tree root. In extreme cases, it can cause the addition of one level to the tree. A deletion can always be carried out in situ. The slot previously occupied by the deleted tuple is simply shown as empty. There are two other problems, however.

· When the deletion involves one of the key values present in the internal nodes of the tree, it is appropriate (even if not strictly necessary) to recover the successive key value from the database and put it in place of the deleted key value. In this way, all the key values present in the B+ tree also belong to the database.

· When the deletion leaves two adjacent pages at leaf level underused, this allows all the information present in them to be concentrated into a single page. Therefore a merge operation should be carried out. This is the opposite of the split operation, and collects all the information of the two pages into a single page. This operation requires a modification of the arrangement of the pointers, shown in Figure 9.19.b. Note that a merge causes a decrease in the number of pointers at a higher level of the tree, and thus can cause a further merge. In practice, as in the case of a split, the merge can continue upwards until it reaches the tree root, where it may cause a reduction in the depth of the tree.

The modification of the value of a key field is treated as the deletion of its initial value followed by the insertion of a new value. Hence, it is dealt with by a sequence of a deletion and an insert, as discussed above.

The careful use of the split and merge operations makes it possible to maintain the average occupancy of each node higher than 50%. Furthermore. even if the tree is initially balanced, differences in the pathway lengths can appear, making it necessary to re-balance the tree. A perfectly balanced tree gives the highest retrieval efficiency. The re-balancing of the tree is an operation that is typically decided by the database administrator, when the tree efficiency becomes too low.
Difference between B and B+ trees It now only remains to clarify the distinction between B and B+ trees. In B+ trees, the leaf nodes are linked by a chain, which connects them in the order imposed by the key, as illustrated in Figure 9 20. This chain allows the efficient execution even of queries with a selection predicate that is satisfied by an interval of values. In this case, it is sufficient to access the first value of the interval (using a normal search), then scan sequentially the leaf nodes of the tree up to a key value greater than the second value of the interval. In the key-sequenced case, the response will consist of all the tuples found by this type of search, while in the indirect case it will be necessary to access all the tuples using the pointers thus selected. In particular, this data structure also makes possible an ordered scan, based on the key values, of the entire file, which is quite efficient. This versatility makes the B+ structure widely used in DBMSs.

In B trees, there is no provision for the sequential connection of leaf nodes. In this case, intermediate nodes use two pointers for each key value Ki. One of the two pointers is used to point directly to the block that contains the tuple corresponding to Ki, interrupting the search. The other pointer is used to continue the search in the sub-tree that includes the key values greater than Ki and less than Ki + 1, as shown in Figure 9.21. The first pointer P0 highlights the sub-tree corresponding to key values less than K1, while the last pointer PF highlights the sub-tree corresponding to key values greater than KF. This technique saves space in the pages of the index and at the same time allows the termination of the search when a given key value is found on intermediate nodes, without having to go through each level.
The efficiency of traversal of B or B+ tree by a given transaction, from the root to given leaves, is normally satisfactory, because the pages that store the first levels of the tree often remain in the buffer due to other transactions. Fortunately, the transactions are normally limited to reading these pages, and by means of locking, it is possible to gain access to them in a shared manner. Optimization of the occupied space occurs by means of the compression of key values. This can be done, for example, by maintaining only their prefixes in the high levels of the tree and only their suffixes in the low levels of the tree, where the final part of the search is carried out.

9.6 Query optimization

The optimizer is an important and classic module in the architecture of a database. It receives a query written in SQL. The query is initially analyzed to identify any possible lexical, syntactic or semantic errors, which are indicated to the user for correction. During this phase, the system accesses the data dictionary to allow semantic checks. The data dictionary also supplies statistical information concerning the size of the tables. Once accepted, the query is translated into an internal, algebraic form. At this point, the actual optimization begins. It consists of the following phases.

· First, an algebraic optimization is carried out. This consists of the execution of all the algebraic transformations that are always convenient, such as the 'push’ of selections and projections, as described in Section 3.1.7. This logical optimization happens independently of the system's cost model.

· Following this, there is an optimization that depends on both the type of data access methods supported by the underlying level, and the cost model used. For this phase, although general optimization principles are well defined, each system presents its own particular characteristics.
· Finally, code is generated using the physical data access methods provided by the DBMS. Thus, an access program is obtained in 'object' or 'internal' format, which uses the data structures provided by the system.

The process of optimization of a query is illustrated in Figure 9.22. Note that, unlike all the other system modules described in this chapter, the optimizer is a module that acts at compilation time. Often, the query is compiled once and carried out many times ('compile and store' approach). In this case, the code is produced and stored in the database, together with an indication of the dependencies of the code on the particular versions of tables and indexes of the database, present in the data dictionary. In this way. if the database changes significantly for the query (for example, because an index has been added), the compilation of the query is invalidated and repeated. Sometimes, however, a query is compiled and carried out immediately ('compile and go' approach), without being stored.

Hereafter, we will concentrate on the central phase of this process, looking at cost-based optimization. Given that this part of the optimization depends specifically on the storage structures and on the cost model used by the DBMS, we can give only a qualitative and approximate description. We assume at this point that the algebraic optimization has produced an optimized description of the query, in which all the obvious algebraic transformations have been carried out. The result of this work represents each SQL query in a tree structure, in which the leaf nodes represent tables and the intermediate nodes represent operations of relational algebra.

9.6.1 Relation profiles
Each commercial DBMS possesses quantitative information about the characteristics of the tables, called relation profiles, which are stored in the data dictionary. The profiles contain some of the following information:

· the cardinality CARD(T) (number of tuples) of each table T;
· the dimension in bytes SIZE(T) of each tuple of T;
· the dimension in bytes SIZE(Aj,T) of each attribute Aj in T;
· the number of distinct values VAL(Aj,T) of each attribute Aj in T;
· the minimum and maximum values MIN(Aj,T) and MAX(Aj,T) of each attribute Aj in T.
The profiles are calculated on the basis of the data actually stored in the tables, by activating appropriate system primitives (for example, the update statistics command). It is the task of the database administrator to activate these commands periodically. Normally, the possibility of keeping the profiles updated during the normal execution of transactions is excluded, because this option is too expensive. In general, it is sufficient that the profiles contain approximate values, given that the statistical models applied to them are in any case approximate.

Cost-based optimization requires the formulation of hypothesis on the size of the intermediate results produced by the evaluation of algebraic operations with a statistical approach. For example, let us look at the profiles of the main algebraic operations; selection, projection and join.

Formulas of profiles of selections The profile of a table T’' produced by a selection T’ = (Ai=V(T) is obtained using the following formulas, the justification for which is left as an exercise:

24. CARD(T’) = (1 /VAL(Ai))  CARD(T);
25. SlZE(T’)=SlZE(T);
26. VAL(Ai,T')=1;
27. VAL(Aj,T') = col(CARD(T), VAL(Aj,T), CARD(T’)), for j (i2

28. MAX(Ai,T') = MlN(Ai,T') = V;
29. MAX(Aj,T') and MIN(Aj,T') maintain the same values as MAX(Aj,T) and MIN(Aj,T). for j(i.
Formulas of profiles of projections The profile of a table T' produced by a projection T’ = (L(t), where L is the set of attributes A1, A2. An, is obtained using the following formulas:

30.
[image: image4.wmf](

)

(

)

(

)

Õ

=

=

¢

n

i

i

T

A

VAL

T

CARD

MIN

T

CARD

1

,

),

(

31.
[image: image5.wmf](

)

(

)

(

)

å

=

=

¢

n

i

i

T

A

SIZE

T

SIZE

1

(

32. VAL.(Ai,T'), MAX(Ai,.T'), MIN(Ai,T') maintain the same values as VAL.(Ai,T), MAX(Ai,.T) and MIN(Ai,T).
Formulas of profiles of joins The profile of a table TJ produced by an equi-join TJ = T'((A=BT'', assuming that A and B have identical domains and in particular VAL(A,T') = VAL(B,T'').
33. CARD(TJ) = (1 /VAL(Ai, T')) (CARD(T') (CARD(T'');
34. SIZE(TJ)=SIZE(T') + SIZE(T'');
35. VAL.(Ai,TJ), MAX(Ai,.TJ), MIN(Ai,7J) maintain the same values as in their respective relations, before executing the join.
The above formulas show the limits of this type of statistical analysis. For example, all the formulas assume uniform distribution of data in the tables and an absence of correlation among the various conditions present in a query. Note that often the formulas assign to the result of an operation parameters identical to those of their operands (for example, as regards the minimum and maximum values of a certain attribute), because it is not possible to make a better prediction. However, this statistical analysis enables us to establish, although approximately, the dimensions of the intermediate results (for example, an estimate of the number of occupied pages); this quantitative data is in any case sufficient to carry out the optimization.
9.6.2 Internal representation of queries
The representation that the optimizer gives to a query takes into account the physical structure used to implement the tables, as well as the indexes available on them. For this reason, the internal representation of a query uses trees whose leaves correspond to the physical data structures available for table storage and whose intermediate nodes represent data access operations that are supported on the physical structures. Typically, the operations supported by the relational DBMSs include sequential scans, orderings, indexed accesses and various types of join.
Scan operation A scan operation performs a sequential access to all the tuples of a table, at the same time executing various operations of an algebraic or extra-algebraic nature:
· projection of a set of attributes;
· selection on a simple predicate (of type: Ai = v);
· sort (ordering) of the tuples of a table based on the values assumed by the attributes present in an ordered set of attributes;
· Insertions, deletions, and modifications of the tuples when they are accessed during the scan.
During a scan. a pointer to the current tuple is always maintained; the scan is carried out by means of the following primitives:
· The primitive open initializes the scan.
· The primitive next lets the scan proceed, advancing the pointer to the current tuple.

· The primitive read reads the current tuple.
· The primitives modify and delete act on the current tuple, modifying the contents or deleting them.
· The primitive insert inserts a new tuple into the current position.

· The primitive close concludes the scan.
Sort operation The problem of ordering data structures is a classic one of algorithm theory. Various methods make it possible to obtain optimal performances in ordering the data contained in the main memory, typically represented by means of a record array. The techniques for ordering data used by DBMSs exploit these algorithms, which we will not describe further. However, a DBMS must resolve a second problem, to do with the loading of data in the buffer. At times, it is not possible to load all the data in the buffer, because of the excessive quantity of data and therefore the impossibility of allocating a large enough number of buffers to the operation. In that case, portions of the data must be separately ordered and then merged, using the available buffer space.

Indexed access Indexes, created using tree structures, are created by the database administrator to favor the associative access of queries that include simple predicates (of the type Ai = V) or interval predicates (of the type V1 (Ai (V2). In this case, we say that a predicate of the query is supported by the index.

In general, if the query presents only one supported predicate, it is convenient to use the corresponding index. When query presents a conjunction of supported predicates, the DBMS chooses the most selective one (that is, the predicate that is satisfied by fewest tuples) for the primary access via index. The other predicates are evaluated in main memory, once the pages that satisfy the first predicate are loaded in the buffer. When, on the other hand, the query presents a disjunction of predicates, it is sufficient that one of them is not supported to impose the use of a complete scan. If instead all the predicates of a disjunctive expression are supported, we can use either the corresponding indexes or a scan. If indexes are used, however, it is necessary to be careful to eliminate the duplicates of those tuples that are found using more than one index.

Note that the use of indexes requires multiple accesses for each retrieved tuple. When the query is not very selective, a simple scan can be more efficient than using an index.

Join methods The join is considered the most costly operation for a DBMS, as there is a risk of an explosion of the number of tuples of the result. Defining the method and order of the join operations has a central role in the global optimization of queries. For this reason it is not surprising that DBMS technology has produced various methods for join evaluation. Only recently, with the increase in interest in aggregate operations, similar algorithms and quantitative approaches have been dedicated to aggregate operations and grouping. Below, we will look at three techniques for join evaluation, called nested-loop, merge-scan and hashed.
· Nested-loop In a nested-loop join, one table is defined as external and one as internal (see Figure 9.23). A scan is opened on the external table. For each tuple found by the scan, the value of the join attribute is collected, and then the matching tuples of the internal tables are searched for. The matching is most efficient if there is an index on the join attribute of the internal table, which could be created ad-hoc. Otherwise, it is necessary to open a scan on the internal table for every value of the join of the external table. The name 'nested-loop' is given to this technique because it suggests an 'embedded" scan in the internal table. Note that this technique has different costs depending on the tables selected as internal and external.
· Merge-scan The technique requires that both the tables be ordered according to the join attributes (see Figure 9.24). Then, two coordinated scans are opened on them, which run through the tuples in parallel, as in a merge over ordered lists. The scans are carefully carried out, to guarantee that all the copies of tuples with identical values of the join attributes give rise to a resulting tuple.

· Hash join This method requires that a hashing function h on the join attributes be used to store both tables (see Figure 9 25). Supposing that the function h makes the values of the domain of this attribute correspond to B partitions on each table, the tuples with the same values in the join attribute will be placed in partitions with identical partition number. Thus,. it will be possible to find all the tuples resulting from the join by carrying out B simple joins between the partitions with equal partition numbers, as shown in Figure 9.25. Various versions of this method allow the optimization of performance using a careful construction of the hash functions and careful management of the main memory buffers.
The three techniques are based on the combined use of scanning, hashing, and ordering. It is clear that each strategy has a cost that depends on the 'initial conditions' to which the join method is applied. For this reason, the execution cost of any of these techniques cannot be evaluated on its own, but must be evaluated as a function of the choices that precede or follow it.

9.6.3 Cost-based optimization
Finally, let us look at how global optimization works. The problem appears difficult on a computational level, because various degrees of optimization are possible.
· We need to select which data access operations to execute. In particular, as far as the first data access is concerned, it is sometimes necessary to choose between a scan and an indexed access.

· We need to select the order in which the operations are to be carried out (for example, the order of the various joins present in a query).

· When a system offers various options for the execution of an operation, we need to select which option to allocate to each operation (for example, choosing the join method).

· When the query or the method of execution requires ordering, we need to define the level of the plan on which to execute the ordering operation.

Further options appear in selecting a plan within a distributed context. Confronted with a problem of such complexity, the optimizers generally make use of approximate cost formulas. These construct a decision tree, in which each node corresponds to the choice of a particular option from among those listed above. Obviously, the size of such a tree increases exponentially according to the number of options present. Each leaf node of the tree corresponds to a specific execution plan of the query described by the choices that are found on the path from the root to the leaf node. Thus, the problem of optimization can be formulated as a search of the leaf node in the decision tree characterized by the lowest cost.

Figure 9.26 shows the execution of a conjunctive query (that is. using only selections, projections and joins) with three tables and two joins, in which the optimizer must decide only the order and the join method to use. There are three possible orderings of the joins and four possible ways to carry out the join operations, giving rise to 48 options. This simple example is indicative of the complexity of the problem in its most general terms.

The problem is typically resolved using cost formulas that allocate a cost in terms of input/output operations and of CPU instructions necessary to evaluate each operation that appears as a node of the tree. In this way, it is possible to allocate a cost to a leaf node:

Ctotal = CI/O (nI/O + Ccpu (ncpu
Where CI/O , Ccpu are known parameters and nI/O, ncpu are global values that indicate the number of input/output operations and of CPU instructions necessary to evaluate the cost of the query. The cost is obtained from the sum of all the accumulated costs due to all the operations that make up a plan. The search for optimal solutions is typically done by discarding the solutions of those sub-trees whose partial cost is higher than the cost of the global strategy. This is done using a technique of operations research, called branch and bound, for the exact or approximate elimination of sub-trees.
Intermediate results are often stored in the buffers and discarded immediately after their production, exploiting the pipelining of the operations. Pipelining is the process of running through the entire tree of operations for each of the tuples extracted, rather than carrying out each operation completely on all the tuples. Sometimes however, it is necessary to rewrite the results of the intermediate operations in the secondary memory. In this case, the cost of rewriting the intermediate results becomes part of the cost of a strategy.
The optimizers are generally satisfied by obtaining 'good' solutions, that is, solutions whose cost is near that of the optimal solution. In particular, 'good solutions' are suggested with a 'compile and go' approach. There is no sense in finding the optimal solution by a method that takes a long time, when it is possible to find a 'good' solution in a shorter time and carry out the strategy in a total time (inclusive of optimization time) that is lower than that of the optimal solution.
9.7 Physical database design

Alter discussing the physical access structures and query optimization techniques, we can return to the problem of database design, which was discussed in Part II. The final phase in the process of database design is the physical design. This phase produces the physical schema of the database, made up of the definitions of the relations and of the physical access structures used, with the related parameters. Physical design takes as input the logical schema of the database and the predictions for the application load, and depends on the characteristics of the chosen DBMS

The activity of physical database design can be very complex, because apart from the choices of the physical structures, we need to define many parameters: firstly, the setting of the initial dimensions of the physical files and the possibility of their dynamic expansion; then, the allocation of buffer space to the DBMS; finally, the choice of allocating within the same pages data from multiple data sets (for example, related tuples from two different tables). Some systems offer tens of parameters, the values of which can be important for the performance of the applications. Usually these parameters have default values, which are assumed by the system when they are not explicitly specified.

Most of the choices to be made during physical design depend on the specific DBMS used, so the treatment here is necessarily incomplete. We will give only a few suggestions, which can be considered sufficient for databases of average size, and with not particularly complex workloads. We will assume that the DBMS allows only for non-ordered files, with the possibility of defining indexes. In this context, physical design can be reduced to the activity of identifying indexes to be defined on each relation.

In order to get our bearings in the choice of indexes, we should remember that, as we said in Section 9.6, the most delicate operations in a relational database are those of selection and join. Each of the two operations can be carried out efficiently if we define indexes that allow direct access to the fields involved.

Consider, for example, a database on two relations: EMPLOYEE, with the attributes RegistrationNumber (the key), Surname, FirstName and Department; and DEPARTMENT, with the attributes Code (the key), Name and Director.

Assume that we wish to carry out a selection on the attribute RegistrationNumber in the EMPLOYEE relation (a search for an employee given the registration number). If the relation has an index for this attribute, we can proceed with a direct access, which is very efficient; otherwise we must carry out a scan, with a cost proportional to the size of the file. The same applies to a search based on the employee's surname. note that if an index is defined on an attribute, only the searches based on this attribute can benefit from it. If the relation has an index on RegistrationNumber and not on Surname, the selections on RegistrationNumber can be carried out efficiently while those on Surname will remain inefficient.

An equi-join between the two relations links each employee with the corresponding department; with an index on the key Code of the DEPARTMENT relation, the join can be carried out efficiently using the nested-loop method. The EMPLOYEE relation is scanned sequentially and for each employee, a direct access is carried out on the DEPARTMENT relation, based on the index. If the index is not defined, the access to the DEPARTMENT relation is inefficient, and the entire join becomes much more expensive.

It is important to remember that most of the joins that appear in our applications are equi-joins and for at least one of the two relations, the fields involved form a key, as in the example just shown. At the same time, note that the key of a relation is usually involved in selection or join operations (or both). For this reason, it is a good idea to define, on each relation, an index corresponding to the primary key. Most DBMSs construct this index automatically. Additional indexes can be defined on other fields on which selection operations are defined or on which an ordering is requested (because an index orders the records logically, lowering the cost of ordering).

With the indexes thus defined, we can test the behavior of our application. If the performance is unsatisfactory, we can add other indexes proceeding very carefully, however, as the addition of an index can cause an increase in the load facing the update operations. At times, moreover, the behavior of the system is unpredictable, and the addition of indexes does not alter the strategy of optimization of main queries. It is good practice, after the addition of an index, to check that the queries use it. There is often a command show plan, which describes the access strategy chosen by the DBMS. For this reason, the choice of indexes in physical relational database design is often carried out empirically, with a trial-and-error approach. More generally, the tuning activity of physical design often makes it possible to improve the performance of the database.
9.7.1 Definition of indexes in SQL
To conclude this brief view of physical design, we will look at the commands available in relational systems for the creation and cancellation of indexes. These commands are not part of standard SQL for two reasons. Firstly, no agreement has been reached within the standardization committee, and secondly, indexes are regarded as an aspect closely linked to the implementation of the system and are thus inappropriate to standardize. However, the syntax that we will demonstrate is used in the best-known commercial systems. The syntax of the command for the creation of an index is

create [unique] index IndexName on TableName(AttributeList)
With this command, we create an index called IndexName in the table TableName, operating on the attributes listed in AttributeList. The order in which the attributes appear in the list is important, as the keys of the index are ordered on the values of the attributes, starling from the first one. The use of the word unique specifies that no two tuples in the table may have the same value in the key attributes. To eliminate an index, the drop index command is used, characterized by a simple syntax:

drop index IndexName
This command can be useful when the application context changes and a certain index is no longer used. It is also useful when the advantage obtained in terms of response times for certain queries does not compensate for the extra work required by the index, in order to keep it consistent with updates to the table.

To give an example of the use of commands seen above, we can specify an index on the EMPLOYEE table, which allows efficient access to data of the employee, given the surname and town:

create index TownNameIndex on Employee(Surname, Town)
To eliminate the index, we use the command:
drop index TownNameIndex
9.8 Bibliography

The subjects presented in this chapter are discussed both in general texts on databases and in more specific books. The main reference for most of the topics of the chapter is the comprehensive book by Gray and Reuter [46]. For the presentation of concurrency control we have followed an organization very close to that of Vossen[90]. Concurrency control and reliability are handled by Bernstein, Hadzilacos and Goodman [8]. The organization of reliability control and of the quantitative optimization of queries (in particular concerning profiles) is discussed in detail by Ceri and Pelagatti [18]. A good introduction to the design of physical structures and their dimensioning is given by Shasha [75]. The concept or transaction introduced in this chapter was recently extended by introducing more complex transitional models, such as nested or long-lived transactions; a good reference is the book edited by Elmagarmid [37].
9.9 Exercises

Exercise 9.1 Indicate whether the following schedules can produce anomalies; the symbols ci and ai indicate the result (commit or abort) of the transaction.
36. r1(x), w1(x), r2(x), w2(y), a1, c2
37. r1(x), w1(x), r2(y), w2(y), a1, c2
38. r1(x), r2(x), r2(y), w2(y), r1(z), a1, c2
39. r1(x), r2(x), w2(x), w1(x), c1 ,c2
40. r1(x), r2(x), w2(x), r1(y), c1,c2
41. r1(x), w1(x), r2(x), w2(x), c1, c2
Exercise 9.2 Indicate whether the following schedules are VSR:
42. r1(x), r2(y), w1(y), r2(x), w2(x)
43. r1(x), r2(y), w1(x), w1(y), r2(x), w2(x)
44. r1(x), r1(y), r2(y), w2(z), w1(z), w3(z), w3(x)
45. r1(x), r1(y), w2(z), w1(z), w3(z), w3(x), w1(x)
Exercise 9.3 Classify the following schedules (as: Non-VSR, VSR, CSR). In the case of a schedule that is both VSR and CSR. indicate all the serial schedules equivalent to them.
46. r1(x), w1(x), r2(z), r1(y), w1(y), r2(x), w2(x), w2(z)
47. r1(x), w1(x), w3(x), r2(y), r3(y), w3(y), w1(y), r2(x)
48. r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), w3(y), w3(x), w1(y), w5(x), w5(y), r5(z)
49. r1(x), r3(y), w1(y), w4(x), w1(t), w3(x), r2(z), w2(z), w3(z), r4(t), r5(t)
50. r1(x), r2(x), w2(x), r3(x), r4(z), w1(x), r3(y), r3(x), w1(y), w3(x), w5(x), w1(z), r5(y), r5(z)

51. r1(x), r1(t), r3(z), r4(z), w2(z), r4(x), r3(x), w4(x). w4(y), w3(y), w1(y), w2(t)

52. .r1(x), r4(x), w4(x), r1(y), r4(z), w4(z). w3(y). w3(z), w1(t). w2(z),. w2(t)
Exercise 9.4 If the above schedules are presented to a scheduler that uses two-phase locking, which transactions would be placed in waiting? (Note that once a transaction is placed in waiting, its successive actions are not considered.)

Exercise 9.5 Define the data structure necessary for the management of locking, for a non-hierarchical model with read repeatability. Implement in a programming language of your choice the functions lock_r, lock_w and unlock. Assume that an abstract data type 'queue' is available with the appropriate functions for the insertion of an element into a queue and for extracting the first element of the queue.
Exercise 9.6 With reference to the exercise above, add a timeout mechanism. Assume that we have available functions for getting the current system time and for extracting a specific element from a queue.

Exercise 9.7 If the schedules described in Exercise 9.3 were presented to a timestamp-based scheduler, which transactions would be aborted?

Exercise 9.8 Consider both single-version and multi-version concurrency control based on timestamp for an object X. Initially WTM(X) = 5, RTM(X) = 7. Indicate the actions of the scheduler in response to the following input:

r(x. 8), r(x. 17). w{x. 16). w{x. 18), w(x. 23), w(x. 29), r(x, 20), r(x. 30). r(x. 25)
Exercise 9.9 Define the data structures necessary for buffer management. Implement in a programming language of your choice the functions fix. use and unfix. Assume we have available the file system functions described in Section 9.3.4.
Exercise 9.10 Describe the warm restarts, indicating the progressive building of the sets UNDO and REDO and the recovery actions, given the following situation on the log:

DUMP, B(T1), B(T2), B(T3), I(T1, O1, A1), D(T2, O2, R2), B(T4), U{T4, O3, B3, A3), U(T1, O4, B4, A4), C(T2), CK(T1, T3, T4), B(T5), B(T6), U{T5, O5, B5, A5), A(T3), CK(T1, T4, T5, T6), B(T7), A(T4), U{T7, O6, B6, A6), U(T6, O3, B7, A7), B(T8), A(T7), failure.
Exercise 9.11 Assume that in the above situation a device failure involves the objects O1, O2 and O3, Describe the cold restart.

Exercise 9.12 Consider a hash structure for storing tuples whose key field contains the following names:

Green, Lovano. Osby, Peterson, Pullen, Scofield, Allen, Haden, Harris, McCann, Mann, Brown. Newmann, Ponty. Cobbham, Coleman, Mingus, Lloyd. Tyner, Hutcherson. Green. Fortune. Coltrane, Shepp.
53. Suggest a hashing function with B = 8 and F = 4.
54. Supposing B = 40 and F = 1. what is the probability of conflict? And with B=20 and F=2?

55. With F = 5 and B = 7. what is the approximate average length of the overflow chain?
Exercise 9.13 Consider a B+ tree structure for storing tuples whose key field contains the data listed in the above exercise.

56. Describe a balanced B+ tree structure with F = 2, which contains the listed data.

57. Introduce a data item that causes the split of a node at leaf level, and show what happens at leaf level and .it the level above
58. Introduce a data item that causes a merge of a node at leaf level, and show what happens at leaf level and at the level above.

59. Show a sequence of insertions that causes the split of the root and the lengthening of the tree.

60. Describe a B tree structure, with F = 3 that contains the given data.

Exercise 4.14 Consider the database made up of the tollowing relations:
PRODUCTlON(ProdNumber, PartType, Model, Quan, Machine)
ORDERDETAIL (OrderNumber, ProdNumber)
ORDER(OrderNumber, Client, Amount)
COMMISSION(OrderNumber, Seller, Amount)
Assume the following profiles

CARD(PRODUCTION) = 200 000
SIZE(production) = 41
CARD(ORDERDETAIL) = 50 000
SIZE(ORDERDETAIL) = 15
CARD(ORDER) = 10,000
SIZE(ORDER) - 45
CARD(COMMISSION) = 5,000
SIZE(COMMISSION) = 35
SIZE(ProdNumber) = 10
VAL(ProdNumber) = 200,000
SIZE(PartType) = 1
VAL(PartType) = 4
SlZE(Model) = 10
VAL(Model) = 400
SIZE(Quan)= 10
VAL(Quan) = 100
SIZE(Machine) = 10
VAL(Machine) - 50
SIZE(OrderNumber) = 5
VAL(OrderNumber) = 10,000
SIZE(CIient) = 30
VAL(CIient) = 400
SlZE(Amount) = 10
VAL(Amount) = 5,000
SIZE(Seller) = 20
VAL(Seller) = 25
Describe the algebraic optimization and the computation of the profiles of the intermediate results for the following queries, which need to be initially expressed in SQL and then translated into relational algebra:

61. Find the available quantity of the product 77Y6878.

62. Find the machines used for the production of the parts sold to the client Brown.

63. Find the clients who have bought from the seller White a box model 3478.
For the last two queries, which require the joining of three tables, indicate the ordering between joins that seem most convenient based on the size of the tables. Then describe the decision tree for the second query allowing for a choice of only two join methods.

Exercise 9.15 List the conditions (dimensions of the tables, presence of indexes or of sequential organizations or of hashing) that make the join operation more or less convenient using the nested-loop, merge-scan and hash methods. For some of these conditions, suggest cost formulas that take into account the number of input/output operation as a function of the average costs of the access operations involved (scans, ordering, index-based accesses).

Figure 9. 1 Architecture of the concurrency control system.

Transaction t1�
Transaction t2�
�
bot

r1(x)

x=x+1�

�
�

�
bot

r2(x)

x= x + 1

w2(x)

commit�
�
w1(x)

commit�

�
�

Transaction t1�
Transaction t2�
�
bot

r1(x)

 x =x+1

w1(x)

commit�

�
�

�
Bot

 r2(x)

 x =x+1 w2(x)

commit�
�
abort�

�
�

Transaction t1�
Transaction t2�
�
bot r1(x)�

�
�

�
bot

r2(x)

x =x+1 w2(x)

 commit�
�
r1(x)

commit�

�
�

Transaction t1�
Transaction t2�
�
bot

r1(.x)�
�
�

�
bot

r2(y) �
�
r1(.y)�
�
�

�
y=y - 100

r2(z)

z = z + 100

w2(y)

w2(z)

commit�
�
r1(z)

s = x + y + z commit�
�
�

Figure 9.2 A schedule S10 conflict-equivalent to a serial schedule S11.

Request�
Resource state�
�
�
free�
r_locked�
w_locked�
�
r_lock�
OK / r_locked�
OK / r_locked�
No / w_locked�
�
w_lock�
OK / w_locked�
No /r_locked�
No / w_locked�
�
unlock�
error�
OK / depends�
OK / free�
�

Figure 9.3. Conflict table for the locking method

Figure 9.4 Representation of the resources allocated to a transaction with a two-phase locking protocol.

t1�
t2�
x�
y�
z�
�
bot�
�
free�
free�
free�
�
r_lock1(x)�
�
1:read�
�
�
�
r1(x)�
�
�
�
�
�
�
bot�
�
�
�
�
�
wlock2(y)�
�
2:write�
�
�

�
r2(y)�
�
�
�
�
r_lock1(y)�
�
�
1:wait�
�
�
�
y=y - 100 wlock2(z)�
�

�
2:write�
�
�
r2(z) z=z+ 100

w2(y)

w2(z)

commit�
�
�
�
�
�
unlock2(y)�
�
1:read�
�
�
r1(y)�
�
�
�
�
�
r_lock1(z)�
�
�
�
1:wait�
�
�
unlock2(z)�
�
�
1:read�
�
r1(z)�
�
�
�
�
�

�
eot�
�
�
�
�
s=x+y+z

commit�
�
�
�
�
�
unlock1(x)�
�
free�
�
�
�
unlock1(y)�
�
�
free�
�
�
unlock1(z)�
�
�
�
free�
�
eot�
�
�
�
�
�

Figure 9.5 Prevention of the occurrence of a ghost update by means of two-phase locking

Request�
Response�
New values�
�
read(x. 6)�
OK�
�
�
read(x,8)�
OK�
RTM(x) = 8�
�
read(x,9)�
OK�
RTM(x)) = 9�
�
write(x,8)�
NO�
t8 killed�
�
write(x,11)�
OK�
WTM(x)=11�
�
read(x,10)�
NO�
t10 killed�
�

Figure 9.6 Taxonomy of the classes of schedule accepted by the methods VSR. CSR. 2PL. and TS

Figure 9.7 Conflict graph for the schedule S13.

Figure 9.8 The hierarchy of resources.

Request�
Resource state�
�
�
ISL�
IXL�
SL�
SIXL�
XL�
�
ISL�
OK�
OK�
OK�
OK�
No�
�
IXL�
OK�
OK�
No�
No�
No�
�
SL�
OK�
No�
OK�
No�
No�
�
SIXL�
OK�
No�
No�
No�
No�
�
XL�
No�
No�
No�
No�
No�
�

Figure 9.9 Compatibility among the lock functions in the presence of hierarchies

Figure 9.10 Architecture of the buffer manager.

Figure 9.11 Architecture of the reliability control system.

Figure 9.12 Description of a log.

Figure 9.13 Description of protocol for the joint writing of log and database

Figure 9.14 Fail-stop model of the functioning of a dbms

Figure 9.15 Architecture of the access manager.

Figure 9.16 Organization of tuples within pages.

� EMBED Equation.3 ����
�
1�
2�
3�
5�
10�
�
�
.5�
0.500�
0.177�
0.087�
0.031�
0.005�
�
�
.6�
0.750�
0.293�
0.158�
0.066�
0.015�
�
�
.7�
1 167�
0.494�
0.286�
0.136�
0.042�
�
�
.8�
2.000�
0.903�
0.554�
0.289�
0.110�
�
�
.9�
4.495�
2.146�
1.377�
0.777�
0.345�
�

Figure 9. 17 The average length of the overflow chain following too many collisions.

Figure 9.18 Information contained in a node (page) of a B+ tree.

Figure 9.19 Split and merge operations on a B+ tree structure.

Figure 9.20 Example of B+ tree.

Figure 9.21 Example of a B tree.

Figure 9.22 Compilation of a query.

Figure 9.23 Join technique with nested-loop. •

Figure 9.24 Join techniques with merge scan.

Figure 9.25 Join technique with hashing.

Figure 9.26 Execution options in a conjunctive query.

F

� The efficiency of algorithms is characterized by their computational complexity; it expresses the total amount of elementary computation required by the algorithm as a function of the size of the data set to which the algorithm is applied. Many algorithms have polynomial complexity, that is, a complexity that can be expressed as a polynomial function of the data set size; these problems are known as tractable. Linear complexity is a special case of polynomial complexity. HP-complete problems are a class of problems for which there is no known solution algorithm with a polynomial complexity, and as such they are regarded as intractable.

� . The formula col(n. m, k) relating to VAL(A.j), calculates the number of distinct colors present in k objects extracted, starting from n objects of m distinct colors, homogeneously distributed. Each color represents one of the different values present in attribute Aj, This formula allows the following approximation:

(a) col{n, m, k) = k if k = m/2

(b) col(n, m, k)=(k+m)/3 if m/2 (k (2m

 (c) col{n, m, k)=m if k (2m

9.1

_1087150342.unknown

_1087200657.unknown

_1087200787.unknown

_1087150426.unknown

_1087150580.unknown

_1087150202.unknown

