Chapter 1
Introduction

Introduction

Collection, organization and storage of data are major tasks in many human activities and in every computer-based system. Bank balances, telephone numbers in directories, stock quotations, availability of credit card funds, registers of students enrolled in a university and grades in their exams are all examples of types of data that are fundamental to the activities to which they refer. Computer-based systems ensure that this data is permanently maintained, quickly updated to show changes, and made accessible to the queries of users who can be remote from one another and from the computer where the data is kept. Imagine, for example, queries about the availability of funds on credit cards, asked through simple devices available In millions of businesses (whether hotels, shops or companies), which allow purchases nude anywhere in the world to be charged to the credit card owners.

This book is about the management of data through the use of computerized information systems; it describes the concepts necessary to represent information on a computer, the languages for update and retrieval. and the specialized architectures for data management. In this first chapter. the concepts of information systems and databases arc Introduced, so that we can then deal with the major characteristics of systems for managing databases.

1.1 Information and data

In the pursuit of any activity, whether by an individual or in an organization of any size. the availability of information and the capacity to manage it efficiently are essential; therefore, every organization has an information system, which manages the information necessary to perform the functions of the organization. The existence of the information system is partly independent of the extent to which it is automated: note that information systems existed long before the invention and widespread adoption of computers; for example, bank records and electoral rolls have been in place for several centuries. In general, only a subset of the Information system of an organization is computerized. The capillary spread of computing technology into almost all human activity characteristic of the eighties and of the nineties, generates a continuous growth in computerization of information systems.

In the simplest of human activities, information is recorded and exchanged according to the natural techniques typical of the activity itself: written or spoken language, drawings, diagrams, numbers. In some activities, an explicit record might not even exist, the information being - more or less accurately - memorized. In any case we can say that, as activities have gradually become systematized, appropriate forms of organization and codification have been found.

In computer-based systems the concept of recording and codifying is taken to the limit: the information is recorded by means of data, which needs to be interpreted in order to provide information. As with many basic concepts, it is difficult to give a precise definition of the concept of data and of the differences between the concepts of data and information: roughly we can say that data alone has no significance, but once interpreted and suitably correlated, it provides information that allows us to improve our knowledge of the world.

For example, the string John Smith and the number 25775, written on a sheet of paper, are two pieces of data that are meaningless by themselves. If the sheet Is sent in response to the question "Who is the bead of the research department and what is his telephone number?', then it is possible to Interpret the data and use it to enrich our knowledge with the information that the person named John Smith is the head of the research department and that his telephone number is 25775.
Having introduced the concept of data in this way, we can move on to that of the database, the main topic of this text. Various definitions are possible; the most general being: a database is a collection of data, used to represent information of interest to an information system. In this book we will mainly consider a far more restricted definition, related to a specific technology, discussed in the next section.

Let us conclude this section with an observation. In many applications, data is intrinsically much more stable than the (manual or automatic) procedures that operate upon it. Returning to an example mentioned earlier, we can observe that the data relating to bank applications has a structure that has remained virtually unchanged for decades, while the procedures that act upon it vary continually, as every customer can readily verify. Furthermore, when one procedure is substituted for another, the new procedure "inherits" the data of the old one with appropriate changes. This characteristic of stability leads us to state that data constitutes a 'resource' for the organization that manages it, a significant heritage to exploit and protect.

1.2 Databases and database management systems

Attention to data has characterized computer-based applications since the beginning, but software systems dedicated specifically to the management of data have been in existence only since the end of the sixties, and some applications still do not make use of them. In the absence of specific software, data management is performed by means of traditional programming languages, for example C and FORTRAN, or more recently, by object-oriented languages, among them C++, Smalltalk and Java. Many applications are written in COBOL, a programming language particularly suitable for 'business applications', that is applications primarily written for data management.

The conventional approach to data management exploits the presence of files to store data permanently. A file allows for the storage and searching of data, but provides only simple mechanisms for access and sharing. With this approach, the procedures written in a programming language are completely autonomous; each one defines and uses one or more 'private* files. Data of possible interest to more than one program is replicated as many times as there are programs that use it with obvious redundancy and the possibility of inconsistency. Databases were created, for the most part, to overcome this type of Inconvenience.

We are now in the position of defining a database management system (DBMS) as a software system able to manage collections of data that are large shared and persistent, and to ensure their reliability and privacy. Like any software product, a dbms must be efficient and effective. A database is a collection of data managed by a DBMS.

Let us comment on each of the above listed characteristics of the DBMS and of the databases.

Databases can be large, in the sense that they can contain thousands of billions of bytes and are. In general, certainly larger than the main memory available. As a result, a DBMS must manage data in secondary memory. Obviously 'small* databases can exist, but the systems must be able to manage data without being limited by dimensions, apart from the physical ones of the devices at hand.

Databases are shared, in the sense that various applications and users must be able to gain access to data of common interest. It is important to note that in this way the redundancy of data is reduced, since repetitions are avoided, and, consequently, the possibility of inconsistencies is reduced; If more than one copy of the same data exist, it is possible that they are not identical; and vice versa, if every piece of data is stored only once, then the problem of inconsistency is eliminated. In order to guarantee shared access to data by many users operating simultaneously, the dbms makes use of a special mechanism called concurrency control.
Databases are persistent: that is, they have a lifespan that Is not limited to single executions of the programs that use them. Conversely, note that the data managed by a program in main memory has a life that begins and ends with the execution of the program; therefore, such data is not persistent.
DBMSs ensure reliability: that is, the capacity of the system to preserve the content of the database (or at least to allow its reconstruction) in case of hardware or software failure. To fulfil this requirement, DBMSs provide specific functions for backup and recovery.
DBMSs ensure data privacy. Each user, who is recognized by a user name that is specific to that users access to the DBMS, is qualified to carry out only certain operations on the data, through the mechanisms of authorization.
dbmss are also concerned with efficiency, that is, the capacity to carry out operations using an appropriate amount of resources (time and space) for each user. This characteristic relies on the techniques used in the implementation of the DBMS, and on how well the product has been designed. It should be stressed that DBMSs provide a wide-ranging combination of features that require many resources, and therefore they often put heavy requirements on the resources provided by the operating environment.
Finally DBMSs increase effectiveness, that is, the capacity of the database system to make the activities of its users productive. In every sense. This is clearly a generic definition and does not correspond to a specific function, given that a dbms provides various services and functions to different users. The task of designing a database and the applications that use It aims essentially to guarantee the good, overall effectiveness of the system.
It is important to stress that the management of large and persistent collections of data is also possible by means of Instruments less sophisticated than dbmss, beginning with the files present in all operating systems. Files were introduced to manage data 'local* to a specific procedure or application. DBMSs were conceived and created to extend the functions of the file system, permitting shared access to the same data by more than one user and application, and also guaranteeing many other services in an integrated manner. Clearly. DBMSs in their turn use files for the storage of data; however, as we shall discuss in Part III of the book, files managed by DBMSs allow the data organization to be of a higher level of complexity.
1.3 Data models

A data model is a combination of constructs used to organize data. Each data model provides structuring mechanisms, similar to the type constructors of programming languages, which allow the definition of new data types based on constructors applied to predefined, elementary types. For example, Pascal allows the construction of types by means of array, record, set and file constructors.
The relational data model, at present the most widespread, provides the relation constructor, which makes it possible to organize data in a collection of records with a fixed structure. A relation is often represented by means of a table, whose rows show specific records and whose columns correspond to the fields of the record; the order of rows and columns is irrelevant. For example, data relating to university courses and their tutors and the insertion of the courses into the prospectus of the various degree programmes, can be organized by means of two relations teaching and prospectus, represented by the tables in Figure 1.1. As we can see, a relational database generally involves many relations.

· The relational model was proposed in a research setting at the beginning of the seventies, appeared on the market in real systems in the early eighties, and is now, as we have said, the most widespread. Besides the relational model, three other types of model have been defined.

· The hierarchical data model, based on the use of tree structures (and hierarchies, hence the name), defined during the first phase of development of DBMSs (in the sixties) but still used in many systems, mainly for continuity reasons.

· The network data model (also known as the CODASYL model, after the Conference on Data Systems Languages that gave it a precise definition). based on the use of graphs, developed in the early seventies.

· The object data model, developed in the eighties in order to overcome some limitations of the relational model, which extends to databases the paradigm of object-oriented programming; Chapter 11, in Pan IV of the book, is dedicated to the object data model.

The data models listed above are all available in commercial DBMSs; they are called logical, to underline the fact that the structures used for these models, although abstract, reflect a particular organization (tree. graph, table, or object). Other data models known as conceptual models have been introduced to describe data in a manner independent of the logical model; but these are not available in commercial DBMSs. Their name comes from the fact that they tend to describe concepts of the real world, rather than the data needed for their representation. These models are used in the preliminary phase of the database design process, to analyze the application in the best possible way, without implementational 'contaminations'. In Part II of this book, dedicated to the design of databases, we examine in detail a conceptual model, the Entity-Relationship model.

1.3.1 Schemas and instances
In a database there is a part that is invariant in time called the schema of the database, made up of the characteristics of the data and a part that changes with time, called the instance or state of the database, made up of the actual values. In the example of Figure 1.1, the relations have a fixed structure; the relation teaching has two columns (called attributes) which refer to courses and tutors respectively. The schema of a relation consists of its heading, that is, the name of the relation, followed by the names of its attributes; for example,

TEACHlNG(Course. Tutor)
The rows of the table vary with time and correspond to the courses currently offered and their respective tutors. During the life of the database, tutors and courses are added, removed or modified; similarly, the prospectus is modified from one year to the next. The instance of a relation is made up of a collection of rows, which vary with time; in the example we have three pairs:

	Databases

Networks

Languages
	Smith

Jones

Robinson

We could also say that the schema is the intensional component of the database and the instance is the extensional component. These definitions will be developed and discussed in detail in Chapter 2.
1.3.2 Abstraction levels in DBMSs
The concepts of model and schema described above can be developed further, considering other dimensions in the description of data. In particular, a standardized architecture for DBMSs has been proposed. It is divided into three levels, known respectively as logical, internal, and external; for each level there is a schema.
The logical
 schema is a description of the whole database by means of the logical model adopted by the DBMS (that is. one of the models described earlier: relational, hierarchical, network or object).

The internal schema describes the implementation of the logical schema by means of physical storage structures. For example, a relation can be physically organized as a sequential file or a hash file, or a sequential file with indices. We discuss physical structures for the organization of data in Part III of the book, devoted to the technological aspects of DBMSs.
An external schema is the description of a portion of the database by means of the logical model. An external schema can offer a different organization of the data in order to reflect the point of view of a particular user or group of users. Thus it is possible to associate various external schemas with a single logical schema: each of the external schemas will provide a specific view of the database (or a subset thereof).

In most of the current systems, the external level is not explicitly present, but it is possible to define derived relations (called views}. For example, as regards the database in Figure 1.1, a student on the Electrical Engineering degree program could be interested only in the courses included in the prospectus for that degree program; this information is present in the relation ELECTRICALENGINEERING, shown in Figure 1.2, which can be derived from the relation prospectus considering only the rows that refer to the Electrical Engineering degree program. Mechanisms for access authorization can be associated with external schemas in order to regulate the access of users to the database: a user could be authorized to manipulate only the data described by means of his external schema.

1.3.3 Data independence
The multilevel architecture described in the previous section guarantees data independence, a major property of DBMSs. In general, this property allows users and applications programs to refer to data at a high level of abstraction, ignoring implementation details. More precisely, data independence presents two aspects, physical and logical independence.

Physical independence allows interaction with the DBMS independently of the physical aspects of the data. For example, it is possible to modify the organization of the files that implement the relations or the physical allocation of files to the storage devices without influencing the high level descriptions of the data and programs that use the data.
Logical independence guarantees that the interaction with the external level of the database is independent of the logical level. For example, it is possible to add a new external schema according to the demands of a new user or to modify an external schema without having to modify the logical schema and therefore the underlying physical organization of the data. At the same time, it is possible to modify the logical level, maintaining unchanged the external schema of interest to a given user (provided that its definition In terms of the logical structures is adjusted).
It Is important to underline that access to a database happens only through the external level (which can coincide with the logical level); it is the DBMS that translates the operations in terms of the underlying levels. The multilevel architecture is therefore the fundamental mechanism through which DBMSs achieve data independence.
1.4 Languages and users

DBMSs are complex systems that offer a variety of languages for the management of data and involve, in their life-cycle, a variety of users.

1.4.1 Database languages
Noting the distinction between schemas and instances that we illustrated above, we may distinguish between database languages in a similar way.
· The data definition language (DDL) is used to define the logical, external and physical schemas and access authorizations.

· The data manipulation language (DDL) is used for querying and updating database instances.

It is important to note that some languages, such as, for example, SQL, which we examine in detail in Chapter 4, offer the features of both a DDL and a DML in an integrated form.
Access to data can be specified in various ways.
· Through interactive textual languages, such as SQL.

· Through commands similar to the interactive ones embedded in traditional programming languages, such as C, C++, COBOL, FORTRAN, and so on; these are called host languages because they 'host' commands written in the database language.

· Through commands similar to the interactive ones embedded In ad hoc development Languages, often with specific features (for example, for the generation of graphs, complex printouts, or forms and menus). These languages vary greatly from one system to another and therefore we can give an idea of only a few of their aspects in the appendices that are devoted to specific systems.

· Through friendly interfaces that allow the formulation of queries without the use of a textual language. These too differ greatly from one system to another and are continually evolving. Again, we touch upon a few simple and important aspects in the appendices.

A large number of programs for data entry, management and printing have a common structure; consequently, the existence of development languages and friendly interfaces considerably simplifies the production of applications, reducing development time and costs.

1.4.2 Users and designers
Various categories of people can interact with a database or with a DBMS. Let us briefly describe the most important.

· The database administrator (DBA) is the person responsible for the design, control and administration of the database. The DBA has the task of mediating among the various requirements, often conflicting, expressed by the users, ensuring centralized control over the data. In particular, he or she is responsible for guaranteeing services, ensuring the reliability of the system, and managing the authorizations for access to the data. Part II of the book is about the design of databases, one of the major tasks of the dba.
· The application designers and programmers define and create programs that access the database. They use the data manipulation language or various support tools for the generation of interfaces for the database, as described above. Chapter 4 describes SQL as a tool for the design of applications on databases.

· The users employ the database for their own activities. They can, in their turn, be divided into two categories.

· End users, who use transactions, that is, programs that carry out frequent and predefined activities, with few exceptions known and taken into account in advance
.

· Casual users, able to use the interactive languages to gain access to the database, formulating queries (or updates) of various types. They can be specialists in the language they use and interact frequently with the database. Note that the term 'casual' means that the queries are not predefined.

1.5 Advantages and disadvantages of DBMSs

We conclude this chapter by summarizing the essential characteristics of databases and DBMSs, and their advantages and disadvantages.

· DBMSs allow data to be considered as a common resource of an organization, available to all its authorized members.

· The database provides a standardized and precise model of that part of the real world of interest to the organization, usable in existing applications and, with the necessary extensions, in future applications.

· • With the use of a DBMS, centralized control of the data is possible, which can be improved by forms of standardization and can benefit from an 'economy of scale’.

· • Sharing allows the reduction of redundancy and inconsistency.

Data independence, the fundamental characteristic of dbmss, favors the development of applications that are more flexible and more easily modifiable.

The use of DBMSs also carries some negative aspects, or at least ones that require careful consideration, including the following.

· DBMSs are expensive products, complex and quite different from many other software tools. Their introduction therefore represents a considerable investment, both direct (the cost of the product) and indirect (the acquisition of the necessary hardware and software resources, application migration, personnel training).

· DBMSs provide, in standardized form, a whole set of services, which necessarily carry a cost. In the cases where some of these services are not needed, it is difficult to extract the services actually required from the others, and this can generate inefficiencies.

In conclusion, we can say that situations can exist in which the adoption of a DBMS can be inconvenient: some applications with one or just a few users without the need for concurrent access can sometimes be achieved more profitably with ordinary files rather than with a dbms. However, dbms technology has evolved considerably in recent years, resulting in more and more efficient and reliable systems, on more and more widespread and less expensive architecture, so increasing the convenience of developing applications with a DBMS.
1.6 Bibliography

There are many other books and additional readings on the general aspects of database systems. The more similar in goals to this book, with balanced treatment of methodological and technical aspects, include ElMasri and Navathe [38| Ramakhrishnan [69] Korth, Silbesrchatz and Sudarshan [78]. and O'Neil [63]. Dates book [33] now in its sixth edition, is very popular in the practitioners' world, since it gives a simple description of many important aspects. Ullman [88] offers an integrated view of existing database technology and possible 'knowledge-based* extensions, a direction that was popular in the eighties. Ullman and Widom [89] focus on a first-level course in databases that includes both a relational and an object-based approach. Additionally, we mention that Stonebrakcr [80] offers a collection of many Influential papers in the field, which can be used to follow the evolution of the technology. For details relating to specific aspects mentioned in this chapter, we refer the reader to the bibliographies of the succeeding chapters, in which they will be explored in more detail.

1

Course�
Tutor�
�
Databases �
Smith. �
�
Networks�
Jones�
�
Languages�
Robinson�
�

DegreeProgramme�
Subject�
Year�
�
Information Systems�
Databases�
4�
�
Information Systems�
Networks�
4�
�
Information Systems�
Languages�
3�
�
Electrical Engineering�
Databases�
4�
�
Electrical Engineering�
Networks�
4�
�

Figure 1. 1 Example of a relational database.

TEACHING

PROSPECTUS

ELECTRICALENGINEERING

DegreeProgramme�
Subject�
Year�
�
Electrical Engineering �
Databases �
4�
�
Electrical Engineering�
Networks�
4�
�

Figure 1.2 A relational view.

� . COBOL is a language of the seventies now largely obsolete; however, many business applications are still written in COBOL. A process of transformation is now in progress that Is aimed at rewriting these applications In the more modern languages for database management the subject of this book

� This level is called conceptual by some authors, following the terminology used originally in the proposal. We prefer the term logical, because, as we have seen. we use the term conceptual for other purposes.

� In database usage, the term transaction also has a more specific meaning, which will be discussed In Part III of the book.

1.6

