Chapter 10
Distributed architectures

[image: image1.png]

Distributed architectures

Distribution is an ingredient of almost any modern application of database systems. This chapter defines the various types of distributed architectures, and then deals with each of them separately.

The simplest and most widespread distributed architecture uses the client-server paradigm. This architecture is based on separating the role of server from the role of client. The server contains the core functions of the DBMS engine and is executed on a computer with suitable main and secondary memory. The client runs on a different computer, which is dedicated to the user interface and hosts the user’s productivity software (for example, e-mail and word processing). The network connects the server and client computers.

Distributed databases present an entirely different set of problems. A distributed database is characterized by the presence of at least two database servers, which can carry out local transactions independently from each other. However, in many cases the servers must interact, thus supporting distributed transactions. This interaction takes place on increasingly complex levels. We will see that the greatest problem is presented by the difficulty of guaranteeing the ACID properties of distributed transactions (as defined in Section 9.1.1), especially when the transactions carry out write operations on two or more servers. To manage these situations, a two-phase commit protocol is introduced; this is one of the most interesting protocols in the data distribution context, as it takes into account the interaction of aspects of distribution, atomicity and durability. We will also look at another typical protocol that describes deadlock detection in a distributed context.

Another type of database architecture uses parallelism to improve performance. The parallel databases are characterized by the use of multiprocessor machines and multiple data management devices, with various interconnection functions. There is a clear distinction between distributed databases and parallel databases. In a distributed database, each server has its own identity and stores data that is 'functionally' associated with that server. In a parallel database the data is allocated to each device and controlled by each processor in a way that responds only to efficiency criteria. For this reason, parallelism introduces a series of problems that are quite different from those of distribution.

The most recent architectures for databases have gradually become specialized with regard to the dominant applications, presenting two distinct components. One component is dedicated to 'on line' data management, to guarantee the modification of data in real time, and the other is responsible for 'decision support', being used to carry out complex data analyses. Thus, two types of hardware/software architecture have emerged:

· Some systems are aimed at optimized management and reliable transactions, performing On-Line Transaction Processing, OLTP. These systems are made to manage hundreds or even thousands of transactions per second, arriving from clients all over the network.

· Other systems are aimed at data analysis, performing On-Line Analytical Processing OLAP. To do this, they must export the data from the OLTP systems, where data is generated, and import them into data warehouses. (See Chapter 13.)
Data management servers can typically support both – OLTP, managing high transaction loads, and OLAP, for the efficient execution of complex queries. The reason for both functions being present is because the separation of OLTP and OLAP is very recent and many application environments do not yet separate the two functions. However, the separation of OLTP and OLAP allows for the specialization, better organization, and optimal sizing of the servers. In this chapter, we will dwell on the technology common to both OLTP and OLAP, while Chapter 13 will be dedicated to OLAP describing the programming paradigms and use of the data warehouse.

A service technology has recently emerged for the creation of distributed applications, particularly in the presence of separated environments for OLTP and OLAP: that of data replication. This term denotes the capacity to construct copies of data, exporting them from one node to another in a distributed system, to maximize the availability of data and to increase reliability.

In an overall technological view characterized by the necessity for interactions between different products, the problems of portability and of interoperability assume even more importance.

· Portability denotes the possibility of transporting programs from one environment to another (and it is thus a typical property of compilation time).
· Interoperability denotes the ability of interacting between heterogeneous systems (and it is thus a typical property of execution time).
In order to obtain portability and interoperability, standards are very important. In particular, portability depends on language standards (primarily SQL), while interoperability depends on the standards concerning data access protocols. In this chapter, we will describe the standard Open Database Connectivity (ODBC), for making heterogeneous databases communicate among themselves. We will also examine X-OPEN Distributed Transaction Processing (DTP), a standardized version of the two-phase commit protocol that ensures the possibility of making different DBMS systems interact in the same ACID transaction.
10.1 Client-server architecture
The client-server paradigm is a model of interaction between software processes, where interacting processes are sub-divided among clients (which require services) and servers (which offer services). Client-server interaction thus requires a precise definition of a service interface, which lists the services offered by the server. The client process is typically dedicated to the final user: it carries out an active role, in that it autonomously generates requests for services. The server process on the other hand is reactive It carries out a computation only as a result of a request on the part of any client. Normally, a client process can request in sequence some (few) services from various server processes, while each server process responds to (many) requests from many client processes. In this section, we will hypothesize that each client sends all the requests to a single server, and that these requests are identified as belonging to the same transaction, initiated at the first request made by the client. We will deal with the interaction of a client with various servers in the next section.

It is not necessary for server and client processes to be allocated different machines. The distinction between client and server processes is an excellent paradigm for the construction of software independently of the allocation of processes. However, in data management, allocation of client and server processes to distinct computers is now widespread.

There are various reasons for the use of the client-server architecture for databases.

· The functions of client and server are well identified in the database context. They give rise to a convenient separation of design and management activities. The application programmer has the responsibility for writing and managing the software for making the client respond to specific demands. The database administrator (DBA) has responsibility for data design and management on the server, which is shared among various clients. The DBA must organize the database to guarantee optimal services to all the client processes

· Apart from the functional breakdown of processes and tasks, the use of different computers for client and server in the database is particularly convenient. The computer dedicated to the client must be suitable for interaction with the user. It is often a personal computer, provided with productivity tools (electronic mail, word processing, spreadsheets, Internet access, and workflow management). Among these tools, often masked by a 'user-friendly interface', some applications request the use of a database The power of the computer dedicated to the server depends on the services that it must offer. It must have a large main memory (to support buffer management) and a high capacity disk (for storing the entire database).

· The SQL language, used in all relational databases, offers an ideal programming paradigm for the identification of the 'service interface'.
The SQL queries are formulated by the client and sent to the server. The results of the query are calculated by the server and returned to the client. The query can be expressed at the client side as an invocation of a predefined remote service, or can be sent at execution time as a string of characters. The server processes the queries, extracting the query result from the database content, and packaging the result of the query. Furthermore, it carries out any database update as expressed in the query. Thus, on the network, only the information useful to the client will travel, and this represents a tiny fraction of the information extracted from the secondary memory. In addition, the standardization, portability and interoperability of the SQL language allows the construction of client applications that involve different server systems.

[image: image2.png]DW manager

Data Warehouse

Integrator

client [Medator | [Medator | [Mediator | client

1
[ioaimames] [Goc] [Loca mansge]

S Y B

The client-server architecture can adapt itself both to statically-compiled queries and to queries with dynamic SQL. With a static process ('compile and [image: image3.png]y

MG

Database server

store'), the queries are presented to the server once and are then recalled many times. Using a dynamic process, ('compile and go'), the queries are transmitted in the form of strings of characters that are compiled and processed by the server. In both cases, the optimizer and the access methods lie with the server, which thus includes all the mechanisms illustrated in the preceding chapter.

With the static process, a server normally stores a parametric query; at execution time, the client assigns values to some entry parameters and then calls the execution of the query, typically using a procedure. Often, the server that manages such requests is multi-threaded. From the point of view of the operating system, it behaves like a single process that works dynamically on behalf of different transactions. Each unit of execution of the server process for a given transaction is called a thread. This organization, shown in Figure 10.1, allows the management of servers as permanently active processes that control an input queue for client requests and an output queue for the query results. The use of a multi-threaded model is more convenient than the allocation of a dedicated process to each request, because it saves process allocation and de-allocation times. The servers can manage the queues directly or by means of other processes, called dispatchers, whose task is to distribute the requests to the servers and return the responses to the clients. In some cases, the dispatchers can dynamically define the number of active server processes as a function of the number of requests received. In this case, we say that a server class is available. The server class contains an arbitrary number of server processes indistinguishable one from another. This phenomenon is similar to the management of a supermarket, where the number of open checkouts varies dynamically depending on the number of customers present.

The architecture illustrated up to now is called a two-tier architecture because it encompasses a client, with functions both of user interface and of application management, and a server dedicated to data management. Recently an alternative architecture has become popular, called three-tier architecture, in which a second server is present, known as the application server, responsible for the management of the application logic common to many clients. In this architecture, the client is named thin-client; it is responsible only for the interface with the final user. The client sends requests to the application server, which communicates with the data management server using the techniques illustrated above. This architecture is becoming widespread with the growth of the Internet, because it allows the creation of clients using a simple browser (see Chapter 14).
10.2 Distributed databases
We have seen that in client-server architecture, a transaction involves at most one server. When more than one server is involved, we talk of distributed databases. In this section, we will deal with distributed databases from the functional point of view, looking at how a user can specify distributed queries. In the next section, we will concentrate on the technological aspects and we will look at how we need to extend the server technology so as to allow their use in a distributed database.

10.2.1 Applications of distributed databases
The reason for the development of distributed solutions in data management is pragmatic. They respond to the demand for the data management architecture to conform to the needs of the enterprises in which data is produced and used, because these enterprises are structurally distributed. Distributed data management is in contrast to the centralized data processing organization typical of large computing centers, which was dominant until the mid-eighties. It allows the distribution of data processing and control to the environment where it is generated and largely used. On the technological level, we have recently witnessed the gradual replacement of centralized systems by distributed systems. justified by many reasons; among them are greater flexibility, modularity and resistance to failures. Distributed systems can be configured by the progressive addition and modification of components, with a much greater flexibility and modularity than those systems based on the use of centralized resources (mainframes). Although they are more vulnerable to failures due to their structural complexity, they are actually capable of so-called 'graceful degradation', that is, of responding to failures with a reduction in performance but without a total failure.

A first classification of distributed databases considers the type of DBMS and network used. When all servers use the same DBMS, the database is known as homogenous otherwise, it is called heterogeneous A distributed database can use a local area network (LAN) or a wide area network (WAN). This classification introduces a corresponding classification of application solutions.

Obviously homogenous systems on LANS correspond to solutions that are technologically simpler and more widespread, present in a large number of application contexts. They include data management applications developed within a small company, or inside a single building or office. More complex homogenous applications have become indispensable in contemporary society. For example, distributed homogenous systems serve many financial applications (including the management of bank accounts); these are created both on LANs and on WANs depending on the distribution of the bank's branches in the territory

The heterogeneous solution is also widely used. For example, many integrated inter-divisional information systems present in companies are heterogeneous (perhaps more from necessity than from choice). Each part of the company often develops its own software independently for its own applications and in particular independently chooses the software for data management. Then, at management level, it is discovered that the company sectors must interact, but at this point the resulting information system is heterogeneous. This company evolution justifies the use of open architectures, that is, of systems that can interact regardless of their heterogeneity. They are in contrast with the proprietary architectures, in which hardware and software are provided by a sole supplier, and are capable of guaranteeing compatibility only within a family of products.

[image: image4.png](A Al 1 9110 LU 31 4l
- L £s 8 = + T node |
3 ¢ ¢ N \
\ ’ h AJ "
) » 3 A (X}
\ T
PEREE S 47 s2102 12 ’lu . 32 .
" Vo '
J X . '
’ N .- . 3
53 63 373 81 - i3 i3

Airline booking systems are often distributed over many nodes linked by WANs. Communication among different systems could be necessary, for instance, in order to put together a journey of many stages involving more than one airline; this requires the use of complex protocols based upon the interaction of heterogeneous systems on WANs. Another example of widespread use, which falls into the context of WANs for heterogeneous systems, is that of inter-banking systems. These allow the execution of financial operations that involve many banks, in which each bank is in turn the owner of a distributed database, on a local or wide area network. The table in Figure 10.2 shows the typical application of distributed databases described up to now, classifying them according to the type of dbms and network.

10.2.2 Local independence and co-operation
From an abstract point of view. a distributed database can be considered as a unique collection of data. Database servers guarantee the application programs access to these resources, offering the user exactly the same type of interaction as that obtained by a centralized system. It is, however, important to note that in a distributed database each server has its own capacity to manage applications independently. Guaranteeing the independence of each server is one of the main objectives of distributed databases.
The reason for having a distributed database is not that of maximizing the interaction and the necessity of transmitting data via networks. On the contrary, the planning of data distribution and allocation should be done in such a way that the largest number possible of applications should operate independently on a single server, to avoid the large execution costs that are typical of distributed applications.

10.2.3 Data fragmentation and allocation
Data fragmentation is a technique for data organization that allows efficient data distribution and processing. This technique is applicable only if data distribution follows a well understood pattern, which is taken into account during the design of the distributed database.

Let us consider a relation R. Its fragmentation consists of determining a certain number of fragments Ri, obtained by applying algebraic operations to R. Depending on the operation used, the fragmentation can be of two types, horizontal or vertical.

· In horizontal fragmentation, the fragments Ri are groups of tuples having the same schema as the relation R. Each horizontal fragment can be interpreted as the result of a selection applied to the relation R.
· In vertical fragmentation, the fragments Ri each have a schema obtained as a subset of the schema of R. Each vertical fragment can be interpreted as the result of a projection applied to the relation R.
The fragmentation is correct if the following properties are valid:
· Completeness: each data item of R must be present in one of its fragments Ri,
· Restorability: the content of R must be restorable from its fragments.

Horizontal fragments are normally disjoint, that is, they have no tuples in common. Conversely, vertical fragments include the primary key defined for R. to guarantee the restorability; in this way they constitute a lossless decomposition of R (as discussed in Chapter 8). Note that fragments are formally defined using operations on the relations. In other words, fragmentation expresses logical properties of data.

Let us look at an example of horizontal and vertical fragmentation. Consider the relation:

EMPLOYEE (Empnum, Name, Deptnum, Salary, Taxes)
The horizontal fragmentation is obtained by subdividing the tuples of EMPLOYEE into many fragments by selection operations:

EMPLOYEE1 = (Enynum<=3 EMPLOYEE
EMPLOYEE2 = (Empnum>3 EMPLOYEE
The reconstruction of the relation based on its fragments requires a union operation:

EMPLOYEE = EMPLOYEE1 (EMPLOYEE2
The vertical fragmentation is obtained by subdividing the tuples of EMPLOYEE into many fragments by projection operations that include in each fragment the primary key of the relation:

EMPLOYEE1 = (EmpNum,Name (EMPLOYEE)
EMPLOYEE2 = (EmpNum,DeptName,Salary,Tax (EMPLOYEE)
The reconstruction of the relation based on its fragments requires an equi-join operation with equal key-values (natural join).

EMPLOYEE = EMPLOYEE1 ((EMPLOYEE2
[image: image5.png]@Z%[)
1)}

The two examples of horizontal and vertical fragmentation described above are illustrated in Figure 10.3. Figure 10.4 and Figure 10.5.
[image: image6.png]DBMS | DBMS 2 DBMS 3
t, —=E E— E—'T
§—E E—uy By

2 initial situation
DBMS 2

E== fo tyo—F

$——<E

b first pass of the algorithm

E—eb{h—eE

E— t—F

. second pass of the algorithm

Each fragment Ri corresponds to a different physical file and is allocated to a different server. Thus, the relation is present in a virtual mode (like a view), while the fragments are actually stored. The allocation schema describes the mapping of full relations or of fragments of relations to the servers that store them. allowing the transfer from a logical description to a physical description of data. This mapping can be:
· [image: image7.png]

non-redundant, when each fragment or relation is allocated to a single server;
· redundant, when a fragment or relation is allocated to more than one server.

10.2.4 Transparency levels
The distinction between fragmentation and allocation allows us to identify various levels of transparency in the applications. These vary from an abstract view of data, independent of the distribution, to a concrete view, dependent on its physical allocation. There are three significant levels of transparency: transparency of fragmentation, of allocation and of language. In addition, a system could have a total absence of transparency, when there is no common language for access to data present in the various servers. In this case, the programmer must address each server with a specific SQL 'dialect'.

Let us look at an example of these four levels of transparency. Consider the table that describes the suppliers for a firm:

SUPPLIER(SNum, Name, City)

Fragmented horizontally into two fragments for the cities of London and Manchester, the only cities in which the company operates:

SUPPLIER1 =(City=' London' (SUPPLIER)
 SUPPLIER2 = (City=' Manchester' (SUPPLIER)
Manchester uses a replicated database, as the second fragment is allocated on two nodes Manchester1 and Manchester2. Thus, the allocation of fragments is:

SUPPLIER1@company.London.uk
SUPPLIER2@company.manchester1.uk
SUPPLIER2@company.manchester2.uk
Let us then consider the simple application that requires a number of suppliers and returns their names. We can write this application in SQL at the various levels of transparency

· Fragmentation transparency: on this level, the programmer should not worry about whether or not the database is distributed or fragmented. The query is identical to that which would be written for a non-fragmented relation.

procedure Queryl (:snum, : name)
select Name into :name
from Supplier where SNum = :snum;
end procedure
· Allocation transparency: on this level, the programmer knows the structure of the fragments, but does not have to indicate their allocation. In particular, if the system allows replicated fragments (as in our example), the programmer does not have to indicate which copy is chosen for access (this additional property is called replication transparency). The following program examines the fragments in sequence. We assume that the parameter :empty assumes the value true if the first SQL query does not find a value.

procedure Query2(:snum, :name);
select Name into :name
from Supplier1
Where SNum = :snum;
if :empty then
select Name into :name
from Supplier2
where SNum = :snum;
end procedure;
· • Language transparency: at this level the programmer must indicate in the query both the structure of the fragments and their allocation. For example, a choice must be made to access the fragment stored in the node Manchester 1. This level is the lowest at which fragmentation can be addressed by using a single query language in which to express the query.

procedure Query3(:snum, :name);
select Name into :name
from Supplier1@company.London.uk
where SNum = :snum;
if :empty then
select Name into :name
from Supplier2@company.manchester1.uk
where SNum = :snum;
end procedure;
· Absence of transparency: In this case. each DBMS accepts its own SQL 'dialect', because the system is heterogeneous and the DBMSs do not support a standard of common interoperability. As in the earlier case, the programmer must indicate explicitly the fragments and their allocation in the system.

Note that the last two levels characterize the queries that are actually carried out by the servers. Queries expressed at a higher level of transparency are transformed during the optimization phase, by introducing into their specifications the choice of particular fragments and their allocation to specific nodes. Such transformation is done by the distributed query optimizer, a subsystem that is aware of data fragmentation and allocation.

This application can be made more efficient by using parallelism: Instead of submitting the two requests in sequence, they can be processed in parallel, thus saving on the global response time. Note, however, that in this specific example, parallel processing requires the computation of two queries (one of which is empty), while the sequential processing is interrupted if the first query is successful, thereby saving some computation. We will deal further with parallelism in Section 10.7.
A different strategy is shown in the following program, which uses the information about the city of the supplier in order to direct the query towards the right server. The query operates at the level of allocation transparency. Note that this solution introduces an element of rigidity: if in future the fragmentation should change the code would be rewritten.

procedure Query4(:snum, :name, :city);
case :city of
 'London':
 select Name into :name
 from Supplier1
 where SNum =:snum;
 'Manchester':
 select Name into :name
 from Supplier2
 where SNum =:snum;
end procedure;
10.2.5 Classification of transactions
A classification schema of transactions based on the composition of the SQL statements that make up a transaction was suggested by IBM and later adopted by various other vendors. In this schema, each client refers to a sole DBMS and the distribution of the transaction becomes the task of the DBMS. The client can obviously address local transactions to the DBMS, that is, transactions made up of queries where the tables are all allocated to that DBMS. It can then address non-local transactions, which involve data stored on other DBMSs. These transactions can be more or less complex.

· Remote requests are read-only transactions made up of an arbitrary number of select queries, addressed to a single remote DBMS.

· Remote transactions are transactions made up of any number of SQL commands (select, insert, delete, update) directed to a single remote DBMS.
· Distributed transactions are transactions made up of any number of SQL commands (select, insert, delete, update) directed to an arbitrary number of remote DBMSs., such that each SQL command refers to data that is stored on a single DBMS.
· Distributed requests are arbitrary transactions, made up of an arbitrary number of SQL commands, in which each SQL command can refer to data distributed on any DBMS. Note that all the queries at fragmentation transparency level are classifiable as distributed requests.

This classification is important because it identifies progressive levels of complexity in the interaction between DBMSs. In the first case the remote DBMS can only be queried. In the second case we can execute update operations, but each transaction writes on a sole DBMS. In the third case we can include update operations on more than one node but each SQL query is addresses to a specific DBMS. In the last case, the SQL query must be distributed to more than one node. As we shall see, the third case requires the use of the two-phase commit protocol and the fourth case requires, in addition, the availability of an optimizer for distributed queries.

A typical example of a transaction is the transfer between two accounts described by the relation:

ACCOUNT(AccNum, Name, Total)

We can assume that the relation is fragmented so that all the accounts with account numbers lower than 10000 are allocated on the first fragment and all the accounts above this number are allocated to the second fragment. A transfer of 100,000 from the account number 3154 to account number 14878 thus consists of two operations, one for each fragment. This is an example of a distributed transaction written at the allocation transparency level.

begin transaction
update Account1
set Total = Total – 100000
 where AccNum = 3154;
update Account2
set Total = Total * 100000
where AccNum = 14878;
commit work;
end transaction

The holders of accounts numbered 3154 and 14878 (and obviously the bank) wish the transaction to be carried out accurately on both nodes. Alternatively, it is acceptable that neither of the two modifications is executed. It is an unacceptable violation of atomicity that one of the modifications is executed while the other is not.
10.3 Technology of distributed databases
In the above sections, we have seen some characteristics of applications of distributed databases. We will now look at how to create these applications.

First, we will address the problem of understanding how the database technology must be extended to take into account data distribution. We will see that some subsystems are not affected by the introduction of distribution. while other subsystems are deeply affected. Data distribution does not influence two of the four ACID properties of transactions, consistency and durability.
· Consistency of transactions does not depend on the distribution of data, because the integrity constraints describe only the local properties of a DBMS. This is more than anything else a limit of the actual DBMS technology, in that integrity constraints could easily refer to distributed data, but in fact there are no mechanisms that allow their specification or verification.

· In a similar way, durability is not a problem that depends on the data distribution, because each system guarantees durability in the case of local device failures by using local recovery mechanisms (logs, checkpoints, and dumps).

On the other hand, other subsystems require major enhancements in order to cope with distributed database technology. We will first look at query optimization, then at concurrency control and finally at reliability control.

10.3.1 Distributed query optimization
Distributed query optimization is required only when a DBMS receives a distributed request, in which data allocated to more than one DBMS is required for the same query. The DBMS that is queried is responsible for the so-called 'global optimization'. It decides on the breakdown of the query into many sub-queries, each addressed to a specific DBMS. A strategy of distributed execution consists of the coordinated execution of various programs on various DBMSs and in the exchange of data among them, which is necessary when the results of a sub-query are used as subjects for another sub-query.

The global optimizer decides the most convenient plan by examining a decision tree, as discussed in Section 9.6. Among the cost factors of a distributed query, there is also the quantity of data transmitted on the network.

As with centralized systems, the optimizer selects the order of operations and their method of execution. In addition, it defines the execution strategy of the operations whose data are allocated to distinct nodes, defining a data transmission strategy and the allocation of results. When the data is redundant, it is also necessary to select the particular copy used. As with centralized optimizers, we can allocate a cost to a leaf node representing the global cost of a query processing strategy. This time we require the contribution of three components (extending the formula presented in Section 9.6.3):
Ctotal = CI/O (nI/O + Ccpu (ncpu + Ctr (ntr
The two new elements ntr and Ctr measure, respectively, the quantity of data transmitted on the network and the unit cost of transmission, and these are added to the processing and input/output costs described in Section 9.6. The importance of this third factor has changed over time. Originally, the transmission cost was the most significant factor, and optimization of distributed queries was based entirely on the reduction of transmission costs. This simplification of the problem is no longer justified, given that the transmission rate of data is, especially on LANs, comparable to that of input/ output devices.

The submission of a query by a client starts all the processes necessary for the execution of the query in the various servers. The execution of access methods happens locally within each DBMS.
10.3.2 Concurrency control
Concurrency control in a distributed environment causes theoretical difficulties. However, in practice, we will see that two-phase locking and timestamping methods are still valid in a distributed context.
We begin by stating the problem. In a distributed system, a transaction ti can carry out various sub-transactions tij, where the second subscript denotes the node of the system on which the sub-transaction works. For example, a distributed transaction ti, which works on two objects x and y allocated on the nodes 1 and 2, appears, from the point of view of its concurrent accesses, as follows:
t1: r11(x) w11(x) r12(y) w12(y)
Note that the local serializability within the schedulers is not sufficient guarantee of serializability. Let us suppose that there is a second transaction t2, which also operates on data x and y, but accesses them in reverse order:
t2: r22(y) w22(y) r21(x) w21(x)

It is possible that the two transactions operate on nodes 1 and 2, presenting two schedules S1 and S2 as follows:
S1: r11(x) w11(x) r21(x) w21(x)
S2: r22(y) w22(y) r12(y) w12(y)

These two schedules are locally serializable. However, when we observe their global conflict graph, defined as in Section 9.2.3, we discover a cycle between t1 and t2, in that:

· on node 1, t1 precedes t2 and is in conllict with t2;
· on node 2, t2 precedes t1 and is in conflict with t1.
Thus the two executions are not conflict-serializable (CSR). It is easy to construct applications in which two transactions t1 and t2 that act in the way described by the schedules S1 and S2 cause loss of updates or ghost updates.

Global serializability The global serializability of distributed transac​tions over the nodes of a distributed database requires the existence of a unique serial schedule S equivalent to all the local schedules Si, produced at each node. This means that, for each node i, the projection S[i] of S. containing only the actions that happen on that node, must be equivalent to the schedule Si. This property is difficult to verify when using schedulers that directly apply view-equivalence or conflict-equivalence, but can be immediately verified whenever the strict two-phase locking or the timestamping method is used. The following properties are valid.

· If each scheduler of a distributed database uses the two-phase locking method on each node and carries out the commit action atomically at a time when all the sub-transactions at the various nodes have acquired all the resources, then the resulting schedules are globally conflict-serializable.

· If distributed transactions each acquire a single timestamp and use these timestamps in their requests to all the schedulers that use concurrency control based on timestamp, the resulting schedules are globally serial based on the order imposed by the timestamps.

The above two properties have great practical relevance, because as a consequence the methods of two-phase locking and timestamping can be applied unaltered to distributed databases. In particular, the synchronization of the commit action in the various nodes, which is required by two-phase locking, is imposed by the atomicity of the transaction (see the two-phase commit protocol in Section 10.4).
Lamport method for assigning timestamps To guarantee the effective function of timestamp based concurrency control each transaction must acquire a timestamp that corresponds to the time at which the distributed transaction will be synchronized with the other transactions. We can use the Lamport method for assigning timestamps that reflect the precedence among events in a distributed system. Using this method, a timestamp is a number characterized by two groups of digits. The least significant digits identify the node at which the event occurs; the most significant digits identify the events that happen at that node. The most significant digits can be obtained from a local counter, which is incremented at each event; in this way each event has a different timestamp. In addition, each time two nodes communicate by exchanging a message, the timestamps become synchronized: given that the sending event precedes the receiving event, the receiving event must have a timestamp greater than the timestamp of the sending event. This may require the increasing of the local counter on the receiving node.

[image: image8.png]

[image: image9.png]

Figure 10.6 describes a certain number of events on three nodes of a distributed system, and shows n assignments of timestamps obtained using the Lamport method. Note that each event is characterized by a distinct timestamp and that the timestamp reflects the order of events produced by the exchange of messages, denoted by broken arrows.

Distributed deadlock detection Finally, we come to the problem of distributed deadlocks that is deadlocks between distributed transactions. Resolving them is more complex, as they can be due to circular waiting situations that happen on two or more nodes. Obviously, the simple solution of timeout is valid no matter what the context in which the deadlocks are created, and thus it is used in most systems. There is however, an elegant and rather efficient algorithm that resolves the deadlocks. It is described below and is a characteristic example of an asynchronous and distributed protocol, implemented in a distributed version of IBM DB2.
Imagine a distributed database model in which the transactions are broken down into sub-transactions. In this context, it is possible that the sub-transactions are activated synchronously, and in this case when the sub-transaction t11 activates the sub-transaction t12 (for example, using a remote procedure call, that is, a synchronous call to a procedure that is remotely executed), t11 waits for the termination of t12. Thus, this model allows for two distinct types of waiting. Firstly, two sub-transactions of the same transaction can be in waiting in the distinct DBMSs as one waits for the termination of the other. Secondly, two different sub-transactions on the same DBMS can wait as one blocks a data item to which the other one requires access.

An example of distributed deadlock is shown in Figure 10.7. The deadlock is due to the following wait conditions:

1. [image: image10.png]

[image: image11.png]

t11 wails for t12, activated by a remote procedure call (rpc);

2. t12 waits for a resource locked by t22:
3. t22 waits for t21, activated using a remote procedure call;

4. finally, t21 waits for a resource locked by t11.
The waiting conditions visible to each DBMS can be characterized using precedence conditions. On DBMS 1, we know that t21 is activated by a remote DBMS and is waiting for t11, which in its turn has activated a sub-transaction on a remote DBMS. Thus we have:
EXT(t21 (t11 (EXT
Symmetrically, on DBMS 2 we have the precedences:
EXT(t12 (t22 (EXT
Now consider any waiting condition in which a sub-transaction ti, activated by a remote DBMS, also waits because of the lock situation for another transaction tj, which in its turn waits for a remote sub-transaction. The waiting condition is summarized using a wait sequence:
(1) EXT(ti (tj (EXT
The algorithm for distributed deadlock detection is periodically activated on the various DBMSs of the system. When it is activated, it analyzes the wait conditions on its DBMS and communicates the wait sequences to other instances of the same algorithm. To avoid the situation in which the same deadlock is discovered more than once, the algorithm allows for a message (1), containing wait sequences, to be sent only 'ahead'. That is, it is sent towards the DBMS where the sub-transaction for which tj is waiting is activated. Further, the message is sent only if, for example, i > j and i and j are the identifiers of the transactions.

The algorithm is activated periodically and works as follows:
5. The messages containing wait sequences arriving from other remote DBMSs are read and the information present in the messages is combined with the local wait conditions, building a wait graph. Each transaction is represented on the graph by a single node, independently of the number of sub-transactions of which it is composed. The nodes corresponding to remote transactions are added to the local wait graph.
6. A local deadlock search is carried out. Deadlock situations are resolved by forcing the abort of one of the transactions involved in the deadlock.

7. The wait sequences are then computed and sent to the remote DBMSs 'ahead', according to the rule described above. At the end of the transmission, the algorithm is deactivated.

Figure 10.8 shows the application of this algorithm to a distributed database

We assume an initial wait condition characterized by these wail sequences:

S1: EXT-> t3 -> t1 -> EXT
S2: EXT-> t1-> t2 -> EXT
S3:: EXT-> t2-> t3 -> EXT
In these conditions, given that the wait sequences must be exchanged 'ahead', only DBMS 1 can transmit its wait sequence to DBMS 2, where the sub-transaction activated by t1 is being carried out. Figure 10.8b illustrates the situation that is verified by DBMS 2 after having received the wait condition S1. Thus a new wait condition appears:
S4: EXT-> t3-> t2 -> EXT
[image: image12.png]Client-TM dulogue:

Transaction starts
Transaction ends (2PC)

Session close
Recovery (TM-driven)

tm_open()

tm_begin()
tm_commit()

[image: image13.png]client

Y

manager

I

5 G 5

This wait condition is sent to DBMS 3, where the sub-transaction activated by t2 is being carried out. Figure 10.8c shows the situation that is generated in DBMS 3 after receiving the wait condition S4. Finally, the deadlock consisting of the pair t2, t3 is recognized (note that the original deadlock also involved t1). One of the two transactions is chosen for the rollback, which involves all of its sub-transactions on all the nodes, and the deadlock is resolved.

10.3.3 Failures in distributed systems
To conclude our analysis of ACID properties for distributed transactions, we still need to deal with atomicity. To guarantee atomicity it is necessary that all the nodes that participate in a transaction reach the same decision regarding the transaction (commit or abort). Thus, it is necessary to follow particular protocols, known as commit protocols, which allow a transaction to reach the correct commit or abort decision.

Unfortunately, atomicity is difficult to guarantee, due to many possible causes of failures that may occur in a distributed system; we turn our attention to a classification of failures, before focusing on commit protocols in the next section.

A distributed system is subject to node failures, which may occur on any node of the system; these may be soft or hard, as discussed in Section 9.4.4. In addition to node failures, message losses can occur, which leave the execution in an uncertain situation. To guarantee the progress of a protocol, each protocol message is followed by an acknowledgement message (ack). However, the loss of either one of the two messages (the first one or the ack) leaves the sender uncertain about whether the message has been received. Since messages can be lost, the commit protocol imposes a limited time on the reception of each ack message; once the time is expired, the sender decides to proceed anyway with the protocol. In this case, it is possible that the timeout expires even when there is no real message loss. Simply, it could happen that one of the two computers exchanging the messages is overloaded and thus is too slow to process those messages.

A third kind of failure occurs when some communication links of the computer network can be interrupted. In this case, in addition to message losses, another phenomenon may occur: the network partitioning in two subnetworks that have no communication between each other. This failure can cause further problems, as a transaction can be simultaneously active in more than one sub-network.

In summary, the causes of failure in distributed systems amount to node failures, message losses, or network partitioning; they can jeopardize the atomicity of distributed transactions. We will now devote our attention to the two-phase commit protocol.
10.4 Two-phase commit protocol

The two-phase commit protocol is similar in essence to a marriage, in that the decision of two parties is received and registered by a third party, who ratifies the marriage. In order for the marriage to take place, both participants must express their wish to marry. The celebrant, during the first phase, receives the desire to marry, expressed separately by the two parties in order to give notice in a second phase that the marriage has taken place. In this context, the servers – who represent the participants to the marriage – are called resource managers (RM). The celebrant (or coordinator) is allocated to a process, called the transaction manager (TM). The number of participants at the marriage is not limited to two, but is arbitrary.

The two-phase commit protocol takes place by means of a rapid exchange of messages between TM and RM. To make the protocol failure resistant RM and TM write some new records in their logs.
10.4.1 New log records
New log records are written during the two-phase commit protocol by extending the log records shown in Section 9.4.2 Both TM and RM are provided with their own logs. The TM writes additional log records.

· The prepare record contains the identity of all the RM processes (that is, their identifiers of nodes and processes). Continuing with the marriage analogy, this record corresponds to the announcements that are written before the marriage.

· The global commit or global abort record describes the global decision. Anticipating the protocol, we note that the time at which the TM writes in its log the global commit or global abort record, it reaches the final decision. A global commit decision consists of bringing the entire transaction to a successful (that is, atomic and durable) termination on all the nodes on which it works. A global abort decision consists of leaving the initial database state unaltered on all the nodes at which the transaction operates.

· The complete record is written at the end of the two-phase commit protocol.
The RM process represents a sub-transaction. As in the centralized context, each RM writes a begin record, followed by various records of insert, delete, and update that represent the operations carried out by sub-transactions. As regards the two-phase commit protocol, there is a single new record on the RM
· The ready record indicates the irrevocable availability to participate in the two-phase commit protocol, thereby contributing to a decision to commit. The identifier (process identifier and node identifier) of the TM is also written on this record.

Note that the participant, once the ready record is written, loses all independence of decision making. The final result of the transaction will be decided by the TM. Furthermore, a participant can write the ready record only when it is in a 'recoverable state'. This means that it must use appropriate locks to block all the resources to which it has access and it must follow the WAL and commit-precedence rules, as denned in Section 9.4.3, in the management of its log.
10.4.2 Basic protocol
In the absence of failure. the two-phase commit protocol consists of a rapid sequence of writes on the log and of exchange of messages between the TM and the RMs. In communication with the RMs, the TM can use broadcast mechanisms that transmit the same message to many nodes. It must then be able to collect responses arriving from various nodes. Otherwise, the TM uses a serial communication with each of the RMs.
The first phase of the protocol is as follows:
8. The TM writes the prepare record in its log and sends a prepare message to inform all the RMs of the start of the protocol. A timeout is then set by the TM indicating the maximum time allocated to the completion of the first phase. The timeout will expire in the case of an excessive delay in the receipt of the reply message from some of the RMs.
9. The RMs that are in a recoverable state await for the prepare message. As soon as the prepare message arrives, they write on their own logs the ready record and transmit to the TM a ready message, which indicates the positive choice of commit participation. If an RM is not in a recoverable state, because a transaction failure has taken place, it sends a not-ready message and ends the protocol. Any RM can at any time autonomously abort a sub-transaction, by undoing the effects and ending the protocol before it begins. As we shall see, the global effect of this situation on the transaction is a global abort.
10. The TM collects the reply messages from the RMs. If it receives a positive message from all the RMs, it writes a global commit record on its log. If, however, one or more negative messages are received or the timeout expires without the TM receiving all the messages, the TM writes a global abort record on the log.
The second phase of the protocol is as follows.
11. The TM transmits its global decision to the RMs. It then sets a second timeout, which will be activated in the case of an excessive delay in the receipt of responses from the RMs.
12. The RMs that are ready await the decision message. As soon as the message arrives, they write the comic or abort record on their own logs. Then they send an acknowledgement to the TM. At this point, the implementation of the commit or abort proceeds on each server as described in the preceding chapter. In particular, the pages modified by the transaction are written to the database by the buffer manager.

13. The TM collects all the ack messages from the RMs involved in the second phase. If the timeout expires without the TM having received all the acks, the TM sets another timeout and repeats the transmission to all the RMs from which it has not received an ack. This sequence is repeated until all the RMs respond by sending their acks. When all the acks have arrived, the TM writes the complete record on its log.

[image: image14.png]

[image: image15.png]16 24 32
Number of

To summarize, a communication failure between TM and RM during the first phase provokes a global abort, while a communication failure between TM and RM during the second phase provokes a repetition of the transmissions, until a communication between the TM and all the RMs is re-established. In this way, the final result of the transaction is communicated to all the RMs in a ready condition. The protocol is shown in Figure 10.9, which describes the exchange of messages and writes on the logs of the TM and one of the RMs.

An RM in a ready state loses its autonomy and awaits the decision of the TM. This situation is particularly dangerous, as a failure of the TM during the protocol leaves each RM process in an uncertain state. In this state, the resources acquired by an RM process (using lock mechanisms) are blocked. Thus, it runs the risk of blocking large portions of the database for long periods The interval that passes between the writing on the participants log of the ready record and the writing of the commit or abort record is called the window of uncertainty. The protocol is designed to keep this interval to a minimum.

The entire group of actions carried out by the processes of client, server sad TM is described in Figure 10.10 for a specific RM (but obviously, there must be at least two RMs). The client sends a task to be executed by the RM and waits for it to be completed. It then sends either in sequence or in parallel, other tasks to be executed by other servers. Note that in the model in Figure 10.10 the client acts as coordinator of the distributed execution. Alternatively, the client can direct its request to a single RM and this last one can send requests to other RM processes, carrying out the role of coordinator of the distributed execution. In both cases, the client or the RM process coordinator waits for all the RMs to finish their tasks, and then activates the two-phase commit protocol, interacting with the TM. At this point, all the RMs are waiting to participate in the commit, receiving the first prepare message. The commit protocol happens very rapidly, as both the RM and the TM simply write the records in the log and send messages, thereby minimizing the window of uncertainty

[image: image16.png]MNﬁwﬂw

[image: image17.png]H)k
(=

In a large number of applications, the processes of client, RM and TM establish their connections once, when processes are initialized, and then reuse them many times, for various transactions. They use permanent communication mechanisms, called sessions, which guarantee an efficient and robust transmission environment for distributed transactions. The concept of sessions refers to the communication protocols between processes and is beyond the scope of this text.
10.4.3 Recovery protocols
Let us now look at the possible causes of error that can affect the execution of the two-phase commit protocol, and at the recovery actions that take place in each case.

Failure of a participant The failure of a participant causes the loss of the contents of the buffers and can thus leave the database in an inconsistent state. As in Section 9.4.4, the state of those participants that are 'uncertain' can be deduced from reading the contents of the log, which is supposed to be stored in the stable memory. The warm restart protocol, as discussed in Section 9.4.4, tells us how to behave in two cases. In both cases, whether a transaction is distributed or centralized is irrelevant:

· when the last record written in the log is a record that describes an action or an abort record, the actions are undone;
· when the last record written in the log is a commit, the actions are redone.
Thus, the only additional case, introduced by the 2PC protocol, concerns those transactions in which the last record written in the log is a ready. In this case, the participant is in doubt about the result of the transaction. Note that the transaction could have committed as a consequence of the positive indication given by the participant, or could have aborted due to a negative indication given by some other participant or to the expiring of the timeout of phase one. During the warm restart protocol, the identifiers of the transactions in doubt are collected in a set (called ready set). For each of these transactions, we have to request the final result of the transaction to TMs. This can happen as a result of a direct (remote recovery) request from the RM node to the TM nodes. Alternatively, the information can be transferred to the TMs from the RM, as a repetition of the second phase of the protocol or following an explicit request to carry out the RM recovery (as in the X-OPEN protocol, which will be described below).

Coordinator failure The failure of the coordinator happens during the transmission of messages and can cause their loss. It is possible to use the log to retrieve the information on the state of the protocol, but the log will not provide information on which messages have been correctly sent. The state of the TM is characterized by the following three cases.

· When the last record in the lug is a prepare, the failure of the TM might have placed some RMs in a blocked situation. Their recovery, by the TM, usually happens by deciding on a global abort, writing this record in the log, and then carrying out the second phase of the protocol. Alternatively, the TM can also repeat the first phase, hoping that all the RMs are still waiting in a ready condition, in order then to decide on a global commit. Note that this alternative requires the RM to respond a ready message while being in the ready state.

· When the last record in the log is a global decision, the failure of the TM might have caused a situation in which some RMs have been correctly informed of the decision and others have been left in a blocked state. In this case, the TM must repeat the second phase, redistributing the decision to all the RMs
· When the last record in the log is a complete, the failure of the coordinator has no effect on the transaction.
Note that the repetition of the second phase can cause a participant to receive the same decision about the same transaction many times. In this case, the participant can simply ignore the decision, but must in any case respond with an ack. to complete the recovery process.

Message loss and network partitioning Finally, let us analyze the cases of message loss and of network partitioning
· The loss of a prepare message and the loss of the succeeding ready messages are not distinguishable by the TM. In both cases, the timeout of the first phase expires and a global abort decision is made.
· The loss of a decision message or of the succeeding ack message are also indistinguishable. In both cases, the timeout of the second phase expires and the second phase is repeated.
· A network partitioning does not cause further problems, in that the transaction will be successful only if the TM and all the RMs belong to the same partition during the critical phases of the protocol
10.4.4 Protocol optimization
The protocol we have seen is laborious. Up to now, we have assumed that all the writings in the log were synchronous (that is, carried out using a force operation) to guarantee durability. Some variations of the protocol allow the avoidance of the synchronous writing of some log records, based on the use of default choices on the result of the transaction in case of failure of the TM. Thus, the TM can, in the absence of information about some participants, indicate by default that these participants have made a decision to commit or abort.
Two variants of the protocol are constructed. They are called presumed commit or presumed abort. We will describe below the protocol of presumed abort, which is adopted by most commercial DBMSs.
Presumed abort protocol The presumed abort protocol is based on the following rule:

· when a TM receives a remote recovery request from an in doubt RM and the TM does not know the outcome of that transaction, the TM returns a global abort decision as default to the rm.
As a consequence of the above rule we can avoid some synchronous writes of records in the TM log. In particular, the force of prepare and global abort records can be avoided in the case of loss of these records caused by a failure of the TM, the TM following the default behavior would give an identical response during the recovery of the transaction. Furthermore, the complete record is not critical for the algorithm; in some systems, it is omitted, and in general its loss causes the repetition of the second phase. In conclusion, only the records ready and commit in the RM log, and global commit in the TM log must be written synchronously, and must be written using the force primitive. These records can be written using group operations, as indicated in Section 9.4.3 in order to improve performance.

'Read-only' optimization A further optimization of the two-phase commit protocol appears when a participant is found to have carried out read operations but no write operations. In this case, the participant must not influence the outcome of the transaction, and must remain disinterested in the 2PC protocol. Note that the participants whose read-only role was known beforehand could be excluded from the protocol even earlier. The optimization of the protocol of a participant found to be "read-only" consists of responding read-only to the prepare message arriving from the coordinator. The participant at this point does not carry out any write operation on the log and suspends the execution of the protocol after sending the message. Having received the read-only reply, the coordinator ignores the participant in the second phase of the protocol.

10.4.5 Other commit protocols
The main problem of the two-phase commit protocol is the possibility that an RM remains blocked because of the failure of the TM. To avoid this problem, other protocols have been developed, with three or four phases. They make it possible to avoid the blocking by introducing a greater complexity of execution. We will briefly touch upon three and four phase protocols.

[image: image18.png]53
p <. comF
update process
-) :
-
N copy(Fl

The four-phase commit protocol The four-phase commit protocol was created by Tandem, a provider of hardware-software solutions for data management based on the use of replicated resources to obtain reliability. In this area, the TM process is also replicated by a backup process, located on a different node. At each phase of the protocol, the TM first informs the backup of its decisions and then communicates with the RMs, as shown in Figure 10.11. In this way, the backup knows the exact state of the transaction and can replace the TM in case of failure of the TM. When a backup becomes TM, it first activates another backup, to which it communicates the information about its state, and then continues the execution of the transaction.

The three-phase commit protocol. The three-phase commit protocol has been defined but not successfully implemented. The basic idea is to introduce a third phase in the standard protocol, as shown in Figure 10.12. Note that a participant is in pre-commit state only if all the other participants are ready, and so an in a recoverable state. The addition of a phase in the protocol allows the reaction to a failure of the TM by electing one of the participants as the substitute for the TM. This new coordinator can decide the result of the transaction by looking at its log.

· If the new coordinator finds a ready in its log, it knows that none of the other participants in the protocol can have gone beyond the pre-commlt condition, and thus can make the decision to abort. Thus the new coordinator registers a global abort decision and communicates it to the other participants.

· If the new coordinator finds a pre-commit in its log, it knows that the other participants are at least in the ready state, and thus can make the decision to commit. Thus, the participant registers a global commit decision and communicates it to the other participants.

The three-phase commit protocol has, however, serious inconveniences, which in practice make it unusable. In the first place, it lengthens the window of uncertainty, and thus makes blocking more probable. In the second place, the atomicity can be lost whenever a network partitioning occurs and two or more participants are chosen as coordinators to end the protocol (one in each partition). To resolve the problem, we must also be sure that the commit or abort decision is made by a sufficient number of participants to guarantee that a different decision could not be made in another partition. This is done using mechanisms based on the use of votes and quorums, which go beyond the scope of this textbook.

10.5 Interoperability

Interoperability is the main problem in the development of heterogeneous applications for distributed databases. The term denotes the capacity for interaction, and requires the availability of functions of adaptability and conversion, which make it possible to exchange information between systems, networks and applications, even when heterogeneous. Interopera​bility is made possible by means of standard protocols such as those for the exchange of files (ftp), electronic mail (SMTP/MIME), and so on With reference to databases, interoperability is guaranteed by the adoption of suitable standards.

In this section we will look at ODBC, a standard to guarantee remote access (but not the two-phase commit protocol), and X-OPEN DTP, a standard specifically focused on the commit protocol. In this way, we will set down the technological premises for the creation of a cooperative architecture between heterogeneous databases, which will be discussed in the next section. In Chapter 11, we will also look at the CORBA standard, which is concerned with interoperability in the context of generic object-oriented applications.

10.5.1 Open Database Connectivity (ODBC)
The standard Open Database Connectivity (ODBC) is an application interface proposed by Microsoft in 1991 for the construction of heterogeneous applications. It is supported by most relational products. Using the ODBC interface, an applications written in SQL can have access to remote data. The language supported by ODBC is a particularly 'restricted' SQL, characterized by a minimal set of instructions, defined in 1991 within the SQL Access Group (SAG), a group of about 50 large users of DBMSs.
In the ODBC architecture, the link between an application and a server requires the use of a driver, a library that is dynamically connected to the applications. The driver masks the differences of interaction due not only to the DBMS, but also to the operating system and to the network protocol used. The driver thus masks all the problems of heterogeneity (not only those imposed by the DBMS), and facilitates the writing of applications. In order to guarantee the compatibility with the ODBC standard, each DBMS supplier must guarantee drivers that allow for the use of that DBMS within the environment of a specific network and with a specific operating system. For example, the trio (Sybase, Windows/NT. Novell) identifies a specific driver.

Access to a remote database using ODBC requires the cooperation of four system components (see Figure 10.13).
· The application issues the SQL queries, in a way that is independent of the communication protocol, the DBMS server, and the operating system of the node where the DBMS is installed; all these features are masked by drivers.

· The dnver manager is responsible for loading the drivers at the request of the application. This software is supplied by Microsoft and also guarantees some functions for converting the names of data items used by the application into names used by the DBMS. These functions guarantee the correct operation of the driver.
· The drivers are responsible for carrying out ODBC functions. Thus, they can execute SQL queries, possibly translating them to adapt to the syntax and semantics of specific products. Drivers are also responsible for returning results to applications, using buffering mechanisms.
· The data source is the remote DBMS system, which carries out the functions transmitted by the client.
In ODBC it is possible to request transactional commands commit-work and rollback-work, which ensure the atomicity of the transactions. These instructions must however be addressed specifically to one DBMS server, because ODBC does not directly support the two-phase commit protocol. In addition, the error codes are standardized to allow the control of error conditions at the time of execution. SQL queries can be specified in a static way, or can be included in strings that are generated and executed dynamically as discussed in Section 4.6.3. In this case. the execution is subject to compilation errors when the SQL code contained in the strings is incorrect.
10.5.2 X-OPEN Distributed Transaction Processing (DTP)
X-OPEN Distributed Transaction Processing (DTP) is .a protocol that guarantees the interoperability of transactional computations on DBMSs of different suppliers. X-OPEN DTP assumes the presence of one client, several RMs and one TM. which interact as described in Figure 10.10 (already discussed). The protocol consists of two interfaces:
· the interface between client and TM. called TM-interface:
· the interface between TM and each RM, called XA-interface.
In order to guarantee that their servers are accessible to the TMs. the vendors of DBMSs must guarantee the availability of the XA-interface. For this reason, in addition to a proprietary version of the two-phase commit protocol (used to create homogenous applications) various relational DBMSs support an implementation of the XA-interface (used to create heterogeneous transactional applications). The X-OPEN standard is adopted by various products specializing in transaction management, such as Encina (a product of the Transarc company) and Tuxedo (from Unix Systems, originally AT&T), which provide the TM component.

The main characteristics of the X-OPEN DTP standard are as follows.

· The standard allows for totally passive RMs. All the protocol control is concentrated in the TM, which activates the RM functions, made available in the form of a library of remotely callable primitives.
· The protocol uses the two-phase commit protocol with the presumed abort and read-only optimizations described above.

· The protocol supports heuristic decisions, which in the presence of failures allow the evolution of a transaction under the control of the operator. These heuristic decisions can cause a loss of atomicity, and in this case, the protocol guarantees that the client processes are notified.

The TM-interface is made up of the following procedures:
· tm_init and tm_exit, to initiate and terminate the client-TM dialogue.

· tm_open, to open a session with the TM. The session allows the establishment of a stable support for the client-TM-RM communications, which can be used by multiple transactions. The session is closed at the beginning of the request for the primitive tm_term from the client

· tm_begin. to begin a transaction.

· tm_commit, to request a global commit.

The XA-interface is made up of the following procedures:

· xa_open and xa_close, to open and close a session between TM and a given RM; the TM issues several xa_open requests with all the RMs participating in transactions, after the establishment of a session with the client;

· xa_start and xa_end, to activate and complete a new RM transaction;
· xa_precom, to request that the RM carry out the first phase of the commit protocol; the RM process can respond positively to the call only if it is in a recoverable state:

· xa_commit and xa_abort. to communicate the global decision about the transaction;

· xa_recover. to initiate a recovery procedure, which is made necessary after the possible failure of a process (TM of RM),

· xa_forget, to allow an RM to forget transactions decided in a heuristic manner.
A typical interaction among client, TM and RM is shown in Figure 10.14.
When an RM is blocked because of the failure of the TM, an operator can impose a heuristic decision (generally the abort), thus allowing the release of the resources. The recovery procedure is guided by the TM, which calls the RM immediately after its successful restart from the failure. At this point, the RM process consults its log and indicates three sets of transactions:

· transactions in doubt:
· transactions decided by a heuristic commit:
· transactions decided by a heuristic abort.
The TM process communicates to the transactions in doubt their actual result (commit or abort) and uses its log to verify whether the heuristic decisions are in conflict with those communicated to the client. If this happens, it notifies the client, informing it of the inconsistency. The resolution of inconsistencies due to erroneous heuristic decisions is application-specific. In any case, the transactions decided heuristically are then forgotten by the RM, following a primitive of xa_forget, sent by the TM.

10.6 Co-operation among pre-existing systems

The rapid development of information technology provides possibilities for the integration among pre-existing information systems This can happen for different reasons, which range from the simple demand for integration of components developed separately within the same organization, to the co-operation or fusion of different companies and organizations.
In this context, we must distinguish between interoperability and co-operation. The latter consists of the capacity of the applications of a system to make use of application services made available by other systems, possibly managed by different organizations. Obviously, the application servers also use interoperability services.
Co-operation is sometimes centered on processes; the systems offer one another services, by exchanging messages, information or documents, or by triggering activities, without making remote data explicitly visible. We will concentrate instead on data centered co-operation, in which the data is naturally distributed, heterogeneous and autonomous, and accessible from remote locations according to some co-operation agreement.
In general, each system should continue to satisfy local user requests, even when carrying out global functions at the same time.
Autonomy, heterogeneity and distribution often cause major difficulties for the development of co-operative systems. They are sometimes seen as obstacles, to be removed by means of appropriate standardization initiatives and rationalization activities. Among these activities, the integration of databases is sometimes attempted; but such integration is quite difficult. Often the demands of each of the system components vary with time and therefore, over-ambitious integration and standardization objectives are destined to fail, or to generate very laborious alignment processes. In this context, the 'ideal' model, a highly integrated database, which can be queried transparently and efficiently, is impossible to develop and manage, and in any case is usually too expensive.
There can be many forms of co-operation centered on data. They differ in levels of transparency, complexity of the operations managed and level of currency of data.

· The transparency level, as discussed in Section 10.2.3, measures how the distribution and heterogeneity of the data are masked, and thus how the set of involved databases appear from the outside as a single database.

· The complexity of distributed operations is a measure of the degree of co-ordination necessary to carry out operations on the co-operating databases.

· The currency level indicates whether the data being accessed is up-to-date or not. In particular, in a co-operating system there are two possible situations: (a) direct access to up-to-date remote data; (b) access to derived data, often managed by a system that is more easily accessible, but whose content is typically not up-to-date.

Based on the above criteria, we can identify three architectures, which represent the three options for guaranteeing data-based cooperation.

A first category is that of multi-database systems, shown in Figure 10.15. In these systems, each of the participating databases continues to be used by its respective users (programs or end users). The single systems are also accessed by modules, called mediators, which transform and filter the accesses, showing only the portion of database that must be exported, and makes it available to a global manager, which carries out the integration. This architecture presents an integrated view to the users, 'as if the database were a single entity'. It thus provides a high level of transparency. The currency is also high, because data is accessed directly. At the same time, the complexity is also high; in general, data cannot be modified by means of mediators, because the local management of modifications at each source system is preferable.

A second category of systems uses replicated data to guarantee read only access to secondary copies of the information provided externally. An example of a system that falls into this category is shown in Figure 10.16; the only difference from the one in Figure 10.15 is the presence of the data warehouse. The data warehouse contains data extracted from various heterogeneous distributed systems and offers a global view of data. These systems also guarantee a high level of transparency, but have a reduced degree of currency. They support complex read-only queries, while updates are not relevant, since it is not possible to update the data sources through the data warehouse. We will look further into this concept in Chapter 13.
Finally, a third typical architecture is that of local information systems with external data access, as shown in Figure 10.17. The substantial difference from earlier cases lies in the fact that in this architecture, data integration is carried out explicitly by the application (that is, the client). For this reason, the architecture has a low degree of transparency and complexity, with a degree of currency that depends on specific demands. In the example, three sources are integrated: an external database, a local database and a data warehouse, which in turn uses three sources of information.

10.7 Parallelism

Parallelism is an important component of database technology. Having witnessed the failure of special architectures for databases (the so-called database machines) during the eighties, parallelism was developed during the nineties along with the spread of standard multiprocessor architectures, that is, architectures that are not specifically dedicated to databases. From the architectural point of view, parallelism is possible with multiprocessor architectures both with and without shared memory. Obviously these have different technical solutions, but in this section we will concentrate on the aspects more specifically linked to data management without dwelling on the technological differences of multiprocessor architectures.

The reason for the success of parallelism in databases is that the computations carried out on a database lend themselves to being carried out in parallel with great efficiency. For example, a complete scan of a large database can be executed using n scans, each on a portion of the database. If the database is stored on n different disks managed by n different processors, the response time will be approximately 1/n of the time required for a serial search. In general, data management operations are quite repetitive in nature, and therefore they are suitable for being carried out in parallel, thereby reducing the time to process a query.

10.7.1 Inter-query and intra-query parallelism

Parallelism is introduced in databases for a specific purpose, that is, to guarantee better performance. There are two types of parallelism:

· Parallelism is called inter-query when it carries out different queries in parallel. In this case, the load imposed on the DBMS is typically characterized by many very simple transactions, which arrive frequently (up to thousands of transactions per second). As was indicated at the beginning of this chapter, this parallelism is particularly useful when the DBMS manages on-line transactions (an OTLP system).

· Parallelism is known as intra-query when it carries out part of the same query in parallel. In this case, the load on the DBMS is characterized by a few extremely complex queries, and thus it is appropriate to subdivide each query into various partial sub-queries, to be entrusted to various processors. This parallelism is particularly useful when the DBMS manages transactions for the analysis of data (an OLAP system).

In both cases, parallelism allows each processor to be allocated a part of the load. In inter-query parallelism, characterized by a heavy transaction load but by a limited number of services offered, parallelism is introduced by multiplying the number of servers and allocating an optimal number of requests to each server. In many cases, the queries are collected by a dispatcher process, whose sole task is to redirect each query to one of the servers. For example, the dispatcher might equalize the load on the servers, or it might direct each query to the server that can gain the most efficient access to the data involved In the query.

Intra-query parallelism is characterized by complex queries, which involve many operators and are evaluated on large amounts of data. In general, a well-defined set of processes is applied in order to answer the same query in parallel; queries are carried out one after another, using the entire multi-processor system for each query. In order to take advantage of intra-query parallelism, the optimizer must decompose the query into sub-queries and add the provisions for co-ordination and synchronization between them. The sub-queries can be limited to the distributed execution of specific operations (for example: scan, sort, and join) or each can be more complex carrying out a chain of operations.

10.7.2 Parallelism and data fragmentation
Parallelism is normally associated with data fragmentation: the fragments are distributed among many processors and allocated to distinct secondary memory devices. For example, consider a database for the management of bank accounts, characterized by the following relations:

ACCOUNT (AccNum, Name, Balance)
TRANSACTION (AccNum, Date, SerialNumber, TransactionType. Amount)

Suppose that the tables are fragmented based on predefined intervals of account number, and each fragment is assigned to a processor. This fragmentation inn can be static, that is permanent, or dynamic, that is created to respond to a specific query. In the second case, which applies to complex OLAP queries, it is necessary to include, in the cost of the query, the initial distribution of the data on the different secondary memory devices of the parallel system

A typical OTLP query is the request for the balance of a specific account holder:
procedure Query5 (: acc-num, : total) ;
select Balance into :total
from Account
where AccNum = :acc-num;
end procedure

A typical OLAP query is the request for the account holders who have carried out transactions for total amounts above 100,000 during 1998.
procedure Query6() ;
select AccNum, sum(Amount)
from Account join Transaction on
Account.AccNum = Transaction. AccNum
where Date >= 1.1.1998 and Date < 1.1.1999
group by AccNum
having sum(Amount) > 100000
end procedure;
In general the OLTP queries can be directed towards specific fragments depending on their selection predicates. OLAP queries, on the other hand, are carried out on all of the fragments in parallel.

Note that the proposed fragmentation and allocation of data about accounts and transactions allows the execution of distributed joins among fragments, that is, the join of pairs of fragments corresponding to the same account number interval. The join between the matching fragments can be carried out in parallel; the parallel execution of n joins on fragments of dimension (1/n) is obviously preferable to the execution of a single join that involves the entire table. For this reason, the execution of distributed joins is essential for intra-query parallelism. In general, when the initial fragmentation does not allow the distributed execution of the joins present in the query, data is dynamically redistributed to support distributed joins.

10.7.3 Speed-up and scale-up
The effects of parallelism are typically described by two curves, called speed-​up and scale-up.

The speed-up curve characterizes only inter-query parallelism and measures the increase of services, measured in tps (transactions per second), against the increase in the number of processors. Figure 10.18 illustrates an ideal situation in which the services increase almost linearly against the increase in processors. OLTP systems guarantee services very close to the ideal, and many vendors are capable of showing almost linear speed-up curves.

The scale-up curve characterizes both inter-query parallelism and intra-query parallelism, and measures the average cost of a single transaction against the increase of the number of processors. Figure 10.19 illustrates an ideal situation, in which the average costs remain almost constant with an increase in processors. In this case, we say that the system 'scales' in an ideal way. In OLTP systems the increase in processors permits the management of a greater number of transactions per second and so responds to an increased transaction load. In OLAP systems, the increase in processors allows an increase in data, which occurs when the data warehouse grows. Both the OLTP systems and the OLAP systems guarantee services that are very close to the ideal, and many constructors are able to show almost constant scale-up curves
10.7.4 Transaction benchmarks
Speed-up and scale-up curves have introduced the general problem of a comparative evaluation or DBMS performances, whether centralized, distributed or parallel. Measuring the services offered by a DBMS requires the existence of specific and precise objectives for transactions and for the loading conditions in which the measures operate. These specifications are called benchmarks. After a long competition among various bodies for the proposal of a standard, the standardization activities of TPC (Transaction Processing Performance Council) became accepted. This is a committee of about thirty suppliers of DBMSs and transaction systems.

Within the TPC consortium, three main benchmarks have been defined, called TPC-A, TPC-B and TPC-C, adapted respectively for OLTP applications, mixed applications and OLAP applications. Each benchmark is divided into various cases according to whether it refers to a mainframe-based architecture, or to a client-server architecture, or to a parallel architecture. The following parameters are included in the specifications of a benchmark:

· the transaction code; for example, in the TPC-A, a typical transaction on bank accounts is characterized by direct updates to a few records per table, with a few well-defined tables that describe money transfers, historical data and data regarding the banks branches;

· the size of the database and the method used for generating data;

· the distribution of the arrivals of transactions, which characterizes the transaction load in terms of tps;
· the techniques for measuring and auditing the validity of the benchmarks.

10.8 Replicated databases

Data replication is an essential service for the creation of many distributed applications. This service is guaranteed by specific products, called data replicators, which allow the creation of copies of tables or of subsets of tables in a generic distributed context.

The main function of a data replicator is to maintain the consistency among copies. In general, there is one main copy and various secondary copies, and updates are propagated from the main copy to the secondary copies in an asynchronous way (that is, without using the two-phase commit protocol). Propagation can be incremental, when it is based on the use of variations; these are sent from the main copy to the secondary copy. Alternatively, the entire secondary copy is periodically completely re​created from the entire main copy. The data replicator does this transparently, without altering the applications that operate on the main copy.

The use of replication makes a system less sensitive to failure. For example, if a main copy is not available due to failure of the corresponding system, it is at least possible to gain access to one of its copies. A typical distributed architecture with replicated data is shown in Figure 10.20. This architecture was introduced for the management of financial applications in which the possible non-availability of the system could cause serious economic loss. The architecture allows for the presence of two sites. Each site manages the entire database; half of which is the main copy and the other half the secondary copy. The transactions are sent to the main copy and then redirected to the secondary copy. Each 'access point’ to the system is connected to both sites. In the case of a failure that involves only one site, the system is capable of commuting almost instantly all the transactions onto the other site, which is powerful enough to sustain the entire load. When the problem is resolved, the replication manager restores the data transparently and then resets the two sites to normal operations.

As we have seen in the introduction of the concept of stable memory (in Section 9.4.1), redundancy is one of the methods for guaranteeing the durability of the information in the case of failure. There are some particularly critical information systems that use replication of data as a sophisticated form of backup. For example, the information systems of some Californian banks, located in a seismic area, have all their data replicated in an identical system, located in a different region. In this case, the copy-system is not normally able to hold the application load, but it is kept up to date by replicating on it the transactions that are committed at the main site.

Replication, fragmentation and distribution of data can be combined. For example, the information system describing production of the various components of Tandem hardware architecture was created, towards the mid-eighties, by incorporating these three technologies. Tandem had about ten factories in various parts of the world, each responsible for the production of a specific part of the architecture of a computer (keyboards. screens, cpu-cases, and so on). The 'bill-of-materials' of the available parts in the company was modeled using an appropriate set of tables. These tables were fragmented to reflect the physical distribution of the construction process of the components, and then allocated to the nodes; each node was co-located with a factory. Fragments were allocated in a redundant way. The main copy of each fragment was on the node responsible for the production process of the hardware components described in that fragment and then secondary copies of each fragment were stored at all the other nodes. The replication manager acted periodically, by collecting a batch of modifications on a given fragment and applying them asynchronously to all the other fragments.

Using this configuration, shown in Figure 10.21, the modifications were always directed to the main copy, but all queries could be performed locally, although on data that was not perfectly aligned.

10.8.1 New functions of replication managers
Some products for data replication also support symmetrical replication, in which the modifications can be carried out on any copy, with a 'peer-to-peer' situation among the copies. In this case, clearly, it is possible to introduce conflicts, in that two copies of the same information are managed in a concurrent way without concurrency control. Therefore, all the anomalies described in Section 9.3.2 can appear in this context. To control this phenomenon, techniques are developed capable of revealing the anomalies after their occurrence and signaling them to a manager of the database, to deal with the inconsistencies in a way that depends on the specific application.

This problem has become more significant in the context of mobile distributed systems, in which the connection with the database can be broken. This happens when salespersons can connect to the database in order to download the availability of merchandise and upload the orders received. The salespersons use laptop computers as client machines. In this case a salesperson can be disconnected from the database for many hours, accepting transactions on the laptop copy. This copy is 'reconciled' with the main copy when the salesperson reconnects to it, at the end of the sale activity.
10.9 Bibliography

This chapter also refers to the texts by Gray and Reuter [46] and Ceri and Pelagatti [18], mentioned in the previous chapter. Distributed databases are described in the more recent textbook by Ozsu and Valduriez [66]. The applications of distributed databases are described by Gray and Anderton [44]; the two-phase commit algorithms, and in particular their optimizations, the standardization in X-OPEN and their use within the field of commercial systems, are widely described by Samaras et al. [72]; distributed detection of deadlocks is described by Obermarck [62] and Lamport clocks are defined by Lamport [54]. The aspects relating to the co-operation of databases can be studied more widely in the texts by Brodie and Stonebraker [11] and Kim [52] and in the articles by Bernstein [9] and Sheth and Larson [76].

10.10 Exercises

Exercise 10.1 Consider the database
PRODUCTION (SerialNumter, PartType, Model, Quantity, Machine)
PlCKUP(SerialNumter, Lot. Client, Salesperson, Amount)
CLIENT(Name, City, Address)
SALESPERSON(Name, City, Address)

Assume four production centers located in Dublin, San Jose, Zurich, and Taiwan and three sales points, located in San Jose, Zurich and Taiwan. Each production centre to responsible for one type of part; the parts are CPU, Keyboard, Screen and Cable. Suppose also three sales points, located in San Jose, Zurich and Taiwan. Suppose that the sales are distributed by geographic location; thus. Zurich clients are served only by salespeople in Zurich (assume that the sales point in Zurich also serves Dublin). Assume that each geographic area has its own database (that is, databases are available in Dublin, San Jose, Zurich, and Taiwan). Design the horizontal fragmentation of the tables PRODUCTION, PICKUP, CLIENT and SALESPERSON. Express the following queries on transparency levels of fragmentation, allocation and language:

14. Determine the available quantity of the product 77Y6878.

15. Determine the clients who have bought a lot from the retailer Wong, who has an office in Taiwan.

16. Determine the machines used for the production of the parts type Keyboard sold to the client Brown.
Exercise 10.5 Apply the warm restart protocol after the failure of a node, assuming a two-phase commit protocol, having the following input (where R(ti) indicates the presence of a ready record):
· B(T1), B(T2), B(T3), I(T1,O1,A1), D(T2,O2,B2), B(T4), R{T1), U(T4,O3,B3,A3), C(T1), CK(T2,T3,T4), B(T5). B(T6), U(T5,O5,B5,A5), R(T5), B(T7), U(T7,O6,B6,A6), B(T8), U(T6,O1,B7,A7), A(T7), R(T6), failure

Exercise 10.6 Describe the warm restart protocol after the failure of a node, assuming a three-phase commit protocol, having the following input (where PC(ti) indicates the presence of a pre-commit record):
· B(T1), B(T2), B(T3), I(T1,O1,A1), D(T2,O2,B2), B(T4), R(T1), U(T4,O3,B3,A3), PC(T1), C(T1), CK(T2,T3,T4), B(T5). B(T6), U(T5,O5,B5,A5), R(T5), B(T7), U(T7,O6,B6,A6), U(T6,O3,B7,A7), B(T8), A(T7), PC(T5), A(T7), R(T6), failure

Exercise 10.7 Given a distributed system with eight nodes assign a quorum necessary to decide commit and a quorum necessary to decide abort to maximize the probability of reaching a commit decision whenever there are four partitions with two nodes each.
Exercise 10.8 On the same database schema as in Exercise 10.1, describe an execution schema for the following queries that maximize the inter-query parallelism:
17. extract the sum of the production quantities, grouped according to type and model of parts;
18. extract inc average value of parts sold by the salespeople, grouped according to type and model of parts.
Exercise 10.9 Describe an example of replicated database behaviour that produces a data inconsistency.
Exercise 10.10 Describe an example of symmetrical replication that produces a data inconsistency.
Figure 10.1 Client-server architecture.

Type of DBMS�
Network type�
�
�
LAN�
WAN�
�
Homogeneous�
Data management and financial applications�
Travel management and financial applications�
�
Heterogeneous�
Inter-dlvisional information systems�
Integrated banking and inter-banking systems�
�

Figure 10.2 Examples of typical applications of distributed databases showing the type of DBMS and network

EmpNum�
Name�
DeptNum�
Salary�
Tax�
�
1�
Robert�
Production�
3.7�
1.2�
�
2�
Greg�
Administration�
3.5�
1.1�
�
3�
Ann*�
Production�
5.3�
1.1�
�
4�
Charles�
Marketing�
3.5�
1.1�
�
5�
Alfred�
Administration�
3.7�
1.2�
�
6�
Paolo�
Planning�
8.3�
3.5�
�
7�
George�
Marketing�
4.2�
1.4�
�

Figure 10.3 Table used in the examples of fragmentation.

EmpNum�
Name�
DeptNum�
Salary�
Tax�
�
1�
Robert�
Production�
3.7�
1.2�
�
2�
Greg�
Administration�
3.5�
1.1�
�
3�
Anne�
Production�
5.3�
2.1�
�

First horizontal fragment

EmpNum�
Name�
DeptNum�
Salary�
Tax�
�
4�
Charles�
Marketing�
3.5�
1.1�
�
5�
Alfred�
Administration�
3.7�
1.2�
�
6�
Paolo�
Planing�
8.3�
3.5�
�
7�
George�
Marketing�
4.2�
1.4�
�

Second horizontal fragment

Figure 10.4 Example of horizontal fragmentation.

EmpNum �
Name�
�
1�
Robert�
�
2�
Greg�
�
3�
Anne�
�
4�
Chartes�
�
5�
Alfred�
�
6�
Paolo�
�
7�
George�
�

EmpNum�
DipNum�
Salary�
Tax�
�
1�
Production�
3.7�
1.2�
�
2�
Administration�
3.5�
1.1�
�
3�
Producbon�
S3�
2.1�
�
4�
Marketing�
3.5�
1.1�
�
5�
Administration�
3.7�
1.2�
�
6�
Planning�
83�
3.5�
�
7�
Marketing�
4.2�
1.4�
�

First vertical fragment

Second vertical fragment

Figure 10.5 Example of vertical fragmentation

Figure 10.6 Example of assignment of timestamps using the Lamport method

Figure 10.7 Example of a distributed deadlock.

Figure 10.8 Example of distributed deadlock detection.

Figure 10.9 Two phase commit protocol.

Figure 10.10 Two-phase commit protocol in the context of a transaction.

Figure 10.11 Four-phase commit protocol.

Figure 10.12 Three-phase commit protocol.

Figure 10.13 Architecture of ODBC.

Figure 10.14 Interactions among client, TM and server with the x-open DTP protocol.

Figure 10.15 Architecture of a multi-database system.

Figure 10.16 Architecture for data warehouse systems.

Figure 10.17 Architecture with external data access.

Figure 10.18 Speed-up in a parallel system.

Figure 10.19 Scale-up in .a parallel system

Figure 10.20 Example of architecture with replicated data.

Figure 10.21 Tandem information system.

10.21

