Chapter 12
Active databases

[image: image1.png]

Active databases

An active database system is a DBMS that supports an integrated subsystem for the definition and management of production rules (active rules). The rules follow the event-condition-action paradigm: each rule reacts to some events, evaluates a condition and, based on the truth value of the condition, might carry out an action. The execution of the rules happens under the control of an autonomous subsystem, known as the rule engine, which keeps track of the events that have occurred and schedules the rules for execution. Thus, an active database system can execute either transactions, which are explicitly initiated by the users, or rules, which are under the control of the system. We say that the resulting system exhibits a reactive behavior which differs from the typical passive behavior of a DBMS without active rules.

When a DBMS is active, the part of the application that is normally encoded by programs can also be expressed by means of active rules. As we shall see, active rules can, for example, manage integrity constraints, calculate derived data and manage exceptions, as well as pursue business objectives. This phenomenon adds a new dimension to the independence of the database, called knowledge independence: knowledge of a reactive type is removed from the application programs and coded in the form of active rules. Knowledge independence introduces an important advantage, because rules are defined with the DDL and are part of the schema, and therefore they are shared by all the applications, instead of being replicated in all the application programs. Modifications to the reactive behavior can be managed by simply changing the active rules, without the need to modify the applications.

Many prototype systems, both relational and object-oriented, provide active rules that are particularly expressive and powerful. In this chapter, we will concentrate on active databases supported by relational DBMSs; almost all relational systems support simple active rules, called triggers, and therefore can be considered active databases in their own right. In this chapter we will use the terms "active rule' and 'trigger' as synonymous.

Unfortunately, there is no consolidated standard proposal for triggers, as they were not defined in SQL-2. Thus, first we will give a general description, which can be adapted easily enough to any relational system. Next, we will describe the syntax and semantics of two specific relational systems, Oracle and DB2. Covering DB2 is particularly useful because the SQL-3 standard for active rules includes a standardization of triggers that uses the same solutions as DB2. We will complete this chapter with a discussion on properties of active databases and with an illustration of their applications.

12.1 Trigger behavior in a relational system

The creation of triggers is part of the data definition language (DDL). Triggers can be dynamically created and dropped; in some systems they can also be dynamically activated and deactivated. Triggers are based on the event-condition-action (ECA) paradigm:

· the events are data manipulation primitives in SQL (insert, delete, update);
· the condition (which can sometimes be omitted) is a boolean predicate, expressed in SQL;

· the action is a sequence of generic SQL primitives, sometimes enriched by an integrated programming language available within the environment of a specific product (for example, PL/SQL in Oracle).

Triggers respond to events relating to a given table, called the trigger’s target.
The ECA paradigm behaves in a simple and intuitive way: when the event is verified, if the condition is satisfied, then the action is carried out. It is said that a trigger is activated by the event, is considered during the verification of its condition and is executed if the condition is true, and therefore the action part is carried out. However, there are significant differences in the ways in that systems define the activation, consideration and execution of triggers.

Relational triggers have two levels of granularity, called row-level and statement-level. In the first case, activation takes place for each tuple involved in the operation; we say that the system has a tuple-oriented behavior. In the second case, activation takes place only once for each SQL primitive, referring to all the tuples invoked by the primitive, with a set-oriented behavior. Furthermore, triggers can have immediate or deferred functionality. The evaluation of immediate triggers normally happens immediately after the events that activated them {after option). Less often, the evaluation of immediate triggers logically precedes the event to which it refers (before option). The deferred evaluation of triggers happens at the end of the transaction, following a commit-work command.

Triggers can activate themselves one after another. This happens when the action of a trigger is also the event of another trigger. In this case, it is said that the triggers are cascading. Triggers can also activate themselves one after another indefinitely, generating a computation that does not terminate. We will address this problem in Section 12.5.

12.2 Definition and use of triggers in Oracle

We will look first at the syntactic characteristics of the command to create triggers, and will then demonstrate their behavior using a typical application.

12.2.1 Trigger syntax in Oracle

The syntax for the creation of triggers in Oracle is as follows:

create trigoer TriggerName

Mode Event {, Event}

on TargetTable

[[referencing Reference]

for each row

[when SQLPredicate]]

PL/SQLBlock
The Mode is before or after, the Event is insert, delete, or update; update may be followed by attribute names of the target table. The referencing clause allows the introduction of variable names, for referring to the old and new values of the row that is changed, with one or both of the following clauses:

old as OLDVanable
| new as NewVariable
We will now discuss the various characteristics in detail. Each trigger controls any combination of the three DML update primitives (insert, delete. and update) on the target table. The granularity of triggers is determined by the optional clause for each row, which is present in the case of row-level granularity, while it is omitted in the case of statement-level granularity. The condition (SQLPredicate) can be present only in the triggers with row-level granularity and consists of a simple predicate on the current tuple. Triggers with statement-level granularity, however, may substitute condition predicates with the control structures of the action part. The action, both with row and statement-level granularity, is written in PL/SQL, which extends SQL by adding the typical constructs of a programming language (as shown in Appendix C). The action part cannot contain DDL instructions or transactional commands.

References to the before (old) and after (new) states of the row that is modified are possible only if a trigger is row-level. In the case of insert only the after state is defined, and in the case of delete only the before state is defined. The old and new variables are implicitly available to indicate, respectively, the old and new state of a tuple. Variable names other than old and new can be introduced by the referencing clause.
12.2.2 Behavior of triggers in Oracle

Triggers in Oracle are immediate and allow for both the before and after options on both row- and statement-level granularity. Thus, combining the two granularities and the two functions, four combinations are obtained for each event:
before row
before statement
after row
after statement

The execution of an insert, delete or update statement in SQL is interwoven with the execution of the triggers that are activated by them, according to the following algorithm:

1. The before statement-level are considered and possibly executed
2. For each tuple of the target table involved in statement:

(a) the before row-level triggers are considered and possibly executed

(b) the statement is applied to the tuple, and then the integrity checks relative to the tuple are carried out.

(c) the after row-level triggers are considered and possibly executed.

3. The integrity checks for the entire table are carried out.
4. The after statement-level triggers are considered and possibly executed.

If an error occurs during the evaluation or one trigger, then all the modifications carried out as a consequence of the SQL primitive that activates the trigger execution are undone. Oracle thus guarantees a partial rollback of the primitive and of all the actions caused by the triggers. Early versions of Oracle imposed a limit of one trigger per kind (before/after row/statement); recent versions have abolished these limitations, without, however, indicating how to prioritize triggers of the same kind that are activated by the same event.

The actions carried out by the triggers can cause the activation of other triggers. In this case, the execution of the current trigger is suspended and the other activated triggers are considered, by recursively applying the algorithm illustrated above. The highest number of triggers in cascade (that is, activated in sequence according to this schema) is 32. Once this level is reached, the system assumes that an infinite execution has occurred and suspends the execution, raising a specific exception.

12.2.3 Example of execution

We illustrate triggers in Oracle by showing them at work on a classical warehouse management problem. The Reorder trigger, illustrated below, is used to generate a new order automatically, by entering a tuple in the PENDINGORDERS table, whenever the available quantity, QtyAvbl, of a particular part of the WAREHOUSE table fills below a specific reorder level (QtyLimit):

create trigger Reorder
after update of QtyAvbl on Warehouse
when (new.QtyAvbl < new.QtyLimit)
for each row

declare

X number;

begin

select count(•) into X

from PendingOrders

where Part = new.Part;

if Z = 0

then

insert into PendingOrdera

values (newPart, new.QtyReord, sysdate) ;

end if;

end;

[image: image2.png]

This trigger has a row-level granularity and is considered immediately after each modification of the attribute QtyAvbl. The condition is evaluated row by row comparing the values of the attributes QtyAvbl and QtyLimit; it is true if the available quantity falls below the limit. The action is a program written in PL/SQL. In the program, a numeric variable X is initially declared; it stores the number of orders already placed for the part being considered. We assume that PENDINGOROERS is emptied when the corresponding parts are delivered to the warehouse; at each time, only one order should be present for each part. Thus, if X is not zero, no new order is issued. If instead X is zero, an order is generated by inserting a tuple into the table PENDlNGORDERS. The order contains the part numbers, the reorder quantity QtyReord (assumed to be fixed) and the current date. The values of the tuples that refer to the execution of the trigger are accessed by use of the correlation variable new. Assume that the initial content of the WAREHOUSE table is as shown in Figure 12.1.

Consider then the following transaction activated on 10/10/1999:

T1: update Warehouse

set QtyAvbl = QtyAvbl - 70

where Part = 1

This transaction causes the activation, consideration and execution of the Reorder trigger, causing the insertion into the PENDINGORDERS table of the tuple (1, 100, 10/10/1999). Suppose that next ihe following transaction is carried out:

T2: update Warehouse

set QtyAvbl = QtyAvbl - 60

where Part <= 3

The trigger is thus considered for all parts, and the condition is verified for parts 1 and 3. However, the action on part 1 has no effect, because we assume that PENDlNGORDERS still contains the tuple relating to part 1. Thus, the execution of the trigger causes the insertion into PENDINGORDERS of the single tuple (3, 120, 10/10/1999), relating to part 3.

12.3 Definition and use of triggers in DB2

In this section we will first look at the syntactic characteristics of the create trigger command, and will then discuss its behavior and an application example.

12.3.1 Trigger syntax in DB2

Each trigger in DB2 is activated by a single event, which can be any data modification primitive in SQL. As in Oracle, triggers are activated immediately, before or after the event to which they refer, and have both row and statement-level granularity. The syntax of the creation instruction for triggers is as follows:

create trigger TriggerName

Mode Event on TargetTable

[referencing Reference]

for each Level

[when (SQLPredicate)]

SQLProceduralStatement
where the Mode is before or after, the Event is insert, delete, or update (update may be followed by attributes of the target table), and the Level is row or statement. The referencing clause allows the introduction of variable names. If the level is row, the variables refer to the tuple that is changed; they are defined by the clauses:

old as OldtupleVar
| new as NewTupleVar
If the level is statement, then the variables refer to the table that is changed, with the clauses:

old_table as OldTableVar
| new_table as NewTableVar
As in Oracle, variables old, new, old_table and new_table are implicitly available, while the referencing clause enables the introduction of different variables. In the case of insertion, only the new or new_table variables are defined; in the case of deletion, only the old and old_table variables are defined.

12.3.2 Behavior of triggers in DB2

In DB2, triggers activated before an event, the before-triggers, are used only to determine errors and to modify the values assigned to the new variables. These cannot contain DML commands that cause a modification of the state of the database, and thus cannot activate other triggers. The system guarantees a behavior in which the side-effects of the before-triggers become visible before the execution of the SQL primitive that activates them. The before-triggers can thus require the prior evaluation of the new values produced by the SQL primitive, which are stored in temporary data structures.

Various triggers on different levels of granularity can refer to the same event. These are considered in an order managed by the system, which takes into account their lime of creation. Row-level and statement-level triggers can be ordered arbitrarily (while in Oracle the relative ordering between triggers of different granularity is fixed, as illustrated by the algorithm in Section 12.2.2). If an action of a trigger with row-level granularity contains many SQL primitives, they are all carried out for one tuple before moving on to the next.

DB2 manuals describe precisely how the evaluation of triggers is carried out with reference to integrity constraints, in particular the referential ones, which are associated with a compensation action. Following a primitive S, the consideration and execution of the before-triggers are first carried out, and can cause modifications to the new variables. Then, the actions that are required for referential integrity are carried out. These actions can cause the activation of many triggers, which are added to the after-trigger activated by S. Finally, the system considers and executes all the activated triggers, based on their system-defined priorities. When the execution of these triggers contains SQL statements that may cause the activation of other triggers, the state of execution of the rule scheduling algorithm is saved and the system reacts by considering the triggers that were subsequently activated, thus initiating a recursive evaluation. At the end, the state of execution of the rule scheduling algorithm is restored, and the execution of the trigger that was suspended is resumed

12.3.3 Example of execution

Consider a database containing the tables PART, DISTRIBUTOR, and AUDIT. The PART table has as its primary key the attribute, PartNum; it has also three other attributes, Supplier, City and Cost. A referential integrity constraint is present in the table PART and refers to the DISTRIBUTOR table:

foreign key (Suppler)
references Distributor on delete null

Let us consider the following triggers:

· SoleSupplier is a before-trigger that prevents the modification of the Supplier attribute unless it is changed to the null value. In all the other cases, this gives an exception that forces a rollback of the primitive.

· AuditPart is an after-trigger that records in the AUDIT table the number of tuples modified in the PART table.

create trigger SoleSupplier
before update of Supplier on Part
referencing new as N
for each row
when (N.Supplier is not null)

signal sqlstate '70005' ('Cannot change supplier')
create trigger AuditPart
after update on Part
referencing old_table as OT
for each statement

insert into Audit

values(user, current-date, (select count(*) from OT))

For example, the removal from the DISTRIBUTOR table of all the suppliers located in Penang causes the violation of the referential integrity constraint. At this point, the management policy for violation of the referential integrity constraint causes the modification to the null value of all the tuples of the PART table that remain dangling after the deletion. This activates the two triggers SoleSupplier and AuditPart. The first is a before-trigger, which is thus considered first. Its evaluation, tuple by tuple, happens logically before the modification, but it has available the N value, which describes the variation. Thus, this value is found to be NULL, and the condition is found to be false. Finally, the AuditPart trigger is activated, inserting into the table AUDIT a single tuple containing the user code, the current data and the number of modified tuples.

12.4 Advanced features of active rules

Building on the basic characteristics of relational triggers, seen above, some advanced systems and prototypes of active database systems have various characteristics that increase the expressive power of active rules. Their advanced features are as follows.

Temporal and user-defined events With regard to events, these can include temporal or user-defined events. The first ones allow the expression of time-dependent events such as, for example, 'every Friday evening' or 'at 17:30 on 20/6/1999'. User defined events are explicitly named and then raised by users' programs. For instance, a 'high-water' user-defined event could be defined and then raised by an application; the raising would activate a rule that reacts to the event.

Event expressions The activation of triggers can depend not only on a single event, but also on a set of events with a simple disjunctive interpretation. Activation can also depend on generic boolean expression of events, constructed according to more complex operators, such as precedence among events and the conjunction of events.

Instead-of mode As well as the before and after modes, there is also another mode, called instead of. When the condition of the corresponding rule is true, the action is carried out in place of the activation event. However, rules with instead of modes may give rather complex and unintuitive semantics (such as: 'when updating the salary of X, instead update the salary of Y'); therefore, this clause is not present in most systems.

Detached consideration and execution The consideration and/or execution of rules can be detached. In this case, the consideration or execution would take place in the context of another transaction, which can be completely independent or can be co-ordinated with the transaction in which the event is verified, using mechanisms of reciprocal dependence.
Priorities The conflicts between rules activated by the same event can be resolved by explicit priorities, defined directly by the user when the rule is created. They can be expressed either as a partial ordering (using precedence relations between rules), or as a total ordering (using numeric priorities). The explicit priorities substitute priority mechanisms implicitly present in the systems.
Rule sets Rules can be organized in sets and each rule set can be separately activated and deactivated.
12.5 Properties of active rules

It is not difficult to design each individual active rule, once its event, condition and action are clearly identified. However, understanding the collective behavior of active rules is more complex, because their interaction is often subtle. For this reason, the main problem in the design of active databases lies in understanding the behavior of complex sets of rules. The main properties of these rules are termination, confluence and identical observable behavior.

· A set of rules guarantees termination when, for each transaction that may activate the execution of rules, this execution produces a final state in a finite number of steps.

· A set of rules guarantees confluence when, for each transaction that may activate the execution of rules, the execution terminates producing a unique final state, which does not depend on the order of execution of rules.
· A set of rules guarantees an identical observable behavior when for each transaction that may activate the execution of rules, this execution is confluent and all the visible actions carried out by the rule are identical and produced in the same order.
These properties are not of equal importance or desirability. In particular, termination is an essential property; we must avoid a situation in which transactions, activated by the user, cause infinite executions normally revealed by the raising of an exception when the maximum number of recursively executed rules is exceeded. Note that infinite executions are due to rules written by the database administrator, and the user would have great difficulty in understanding the situation and finding a remedy. On the other hand, confluence and identical observable behavior might not be essential, especially in the presence of various equally acceptable solutions of the same problem.

The process of rule analysis allows the verification of whether the properties requested are valid for a particular set of rules. In particular, an essential tool for verifying the termination of a set of rules is the activation graph, which represents interactions among rules. The graph is created by adding a node for each rule and an arc from a rule R1 to a rule R2 when the action of R1 contains a DML primitive that is also one of the events of R2. A necessary condition for non-termination is the presence of cycles in the activation graph: only in this case we can have an infinite sequence of execution of rules. An example of an activation graph is shown in Figure 12.2.

Systems with many active rules are often cyclic. However, only a few cycles actually correspond to critical situations. In fact, cyclicity is a necessary but not sufficient condition for non-termination. Most cycles are indeed 'innocuous', as they describe an acceptable mutual interaction between rules.

Let us consider, for example, the rule SalaryControl (written in DB2), which creates a 'conservative' policy of salary control. It reduces the salary of all the employees when the average salary goes beyond a certain level:

create trigger SalaryControl
after update of Salary on Employee
then update Employee

set Salary = 0.9 • Salary

where (select avg(Salary) from Employee) > 100

The activation graph for this rule has only one node and a ring; thus, it presents a cycle, which indicates the possibility that the rule is re-activated by itself. On the other hand, whatever the initial transaction, the execution of the rule eventually terminates, as the rule progressively reduces the salaries until they are again within the established level. At this point, the condition is false. However, a slightly different rule, which gives a rise of salary rather than decreasing it, presents termination problems:

create trigger SalaryControl2
after update of Salary on Employee
tben update Employee

set Salary = 1.1 • Salary

where (select avg(Salary) from Employee) > 100
The activation graph associated with this rule does not change. However, if the rule is executed once, it will be executed an infinite number of times, causing non-termination, as the operation carried out by the rule is unable to make its condition false.

This example shows that the cycles give only 'indications' of possible causes of non-termination. A detailed analysis of cycles, which can be partly automated, can give rise to the conclusion that a cycle is innocuous, or instead to suggest modifications to rules that guarantee its termination.

12.6 Applications of active databases

Active rules respond to several application needs. Many classic applications of active rules are internal to the database: the active rule manager works as a subsystem of the DBMS to implement some of its functions. In this case, triggers are generated by the system and are thus not visible to the users. The typical characteristic of internal applications is the possibility of giving a declarative specification of the functions, from which to derive the active rules The main functions that can be entrusted to active rules of an internal type include the management of integrity constraints of a predefined structure, the calculation of derived data and the management of replicated data. Other functions include version management, privacy management, data security enforcement and event logging.

Other rules, classified as external, express knowledge specific to the application, which are beyond predefined and rigid schemas. These rules are also called business rules as they express the strategies of a company for carrying out its primary functions (see also Chapter 5 and Chapter 6). In the case of business rules, there are no fixed techniques for the derivation of rules based on specifications. Consequently, each problem must be confronted separately. Below, we will look briefly at referential integrity and then we show some business rules.

12.6.1 Referential integrity management

The management of integrity constraints using active rules requires first that the constraint be expressed in the form of an SQL predicate. The predicate will correspond to the condition part of one or more active rules associated with the constraint; note, however, that the predicate must be negated in the rule, so that the consideration yields a truth value when the constraint is actually violated. After this, the designer will concentrate on the events that can cause a violation of the constraint. They contribute to the event parts of active rules. Finally, the designer will have to decide which action to carry out following the violation of the constraint. For example, the action could be to force the partial rollback of the primitive that has caused the violation, or could carry out a repair action, which corrects the violation of the constraint. This is how the action part of the active rule is constructed.

We illustrate this general approach to integrity maintenance with active rules by means of the classical referential integrity constraint. Note, however, that most systems manage referential integrity by means of ad hoc methods.

We look again at the simple referential integrity constraint discussed in Section 4.1.7. Given the tables EMPLOYEE and DEPARTMENT, the constraint indicates that the Dept attribute of EMPLOYEE is a foreign key referencing the attribute DeptName of DEPARTMENT. The referential integrity specification is given by means of the following clause, inserted into the definition of the EMPLOYEE table:

foreign key(Dept) references Department(DeptName)

on delete set null.

on update cascade

We may consider the foreign key clause as a declarative specification of both the condition of the constraint and of the repair actions that must be performed to restore the database consistency. The operations that can violate this constraint are:

· insert into EMPLOYEE;
· delete from DEPARTMENT;
· update to EMPLOYEE.Dept;
· update to DEPARTMENT.DeptName.

The constraint can be expressed as an assertion for the table EMPLOYEE, which imposes for each employee the existence of a department to which the employee belongs:

exists (select * from Department

where DeptName = Employee.Dept)

Note that this assertion indicates a property that must be true for all employees, but in an active rule. we are interested in capturing the situations that violate the constraint. We will therefore use the negation of the assertion illustrated above as the basis for building the condition to be included within the active rules:

not exists (select * from Department

where DeptName = Employee.Dept)
The constraint can also be expressed as an assertion, already presented in negative form, for the table, DEPARTMENT. In this case, the constraint is violated if there is an employee without a department:

exists (select * from Employee

where Dept not in

(select Deptname from Department))

We then need to construct four active rules. Two react to each insertion in EMPLOYEE or modification of the Dept attribute, canceling the effect of the operations if they violate the constraint. Remember that, according to the definition of referential integrity, violations caused by operations on the internal table have to cause a rejection of the operation. The other two rules react to each deletion from DEPARTMENT or update of the Dept attribute, and implement the policies specified with the constraint.

The first rule is coded by the following trigger in DB2:

create trigger DeptRef1
after insert on Employee
for each row
when (not exists

(select * from Department

 where DeptName = New.Dept))
signal sqlstate '70006' ('employee without department'

The second rule is the same except for the event:

create trigger DeptRef1
after update on Employee
for each row
when (not exists

(select * from Department

 where DeptName = New.Dept))
signal sqlstate '70006' ('employee without department'

The third rule reacts to the cancellation of a tuple of DEPARTMENT, imposing a null value on the attribute Dept of the tuples involved:

create trigger DeptRef3
after delete on Department
for each row
when (exists

(select * from Employee

where Dept = Old.DeptName))
update Employee

set Dept = null

where Dept =Old.Deptname
Note that the condition is simpler than that shown above. It identifies as critical those employees whose departments coincide with a department removed by the delete operation. In fact, the condition could even be omitted, as the action is performed on all and only the tuples that satisfy the condition.

The fourth rule reacts to modification of the attribute DeptName of DEPARTMENT, reproducing on EMPLOYEE the same modification on the Dept attribute as in the DEPARTMENT table:

create trigger DeptRef4
after update of Department on Deptname
for each row
when (exists

(select • from Employee

where DeptName = Old.DeptName))
update Employee

set Dept = New.Deptname

where Dept = Old.Deptname
Note that in this case, too, the condition is optimized and could even be omitted.

12.6.2 Business rules

Business rules express the strategies of a company in pursuing its objectives. Examples are the rules that describe the buying and selling of stocks based on the fluctuations in the market, rules for the management of a transport network or of energy, or rules for the management of a warehouse based on the variations of available quantities of each part (see Section 12.2.3). Some of these rules are simple alerters, which limit themselves to the action part and emit messages and warnings, leaving the users to manage abnormal situations.

Business rules have already been introduced in Section 5.3.1 to express schema constraints. Remember that these were classified as integrity or derivation rules. Integrity rules are predicates that express conditions that must be true. In commercial DBMSs. they can be programmed using the check clause or using assertions. However, many DBMSs introduce restrictions on the predicate that are expressible using these clauses, thus limiting their effective usability. Furthermore, the use of SQL-2 constraints goes together with adopting the reaction policies present in the standard (or supported by DBMSs), while the desired reaction is often different. Therefore, active rules (which are supported by most relational DBMSs) can be used for the specification and implementation of 'generic' constraints and 'arbitrary' reactions.
Let us look at how we can program the business rule BR2 introduced in Section 5.3.1, using an active rule. The business rule is repeated here: (BR2) an employee must not have a salary greater than that of the manager of the department to which he or she belongs.
Let us use the tables EMPLOYEE and DEPARTMENT, where EmpNum is the primary key of EMPLOYEE and DeptNum is the primary key of DEPARTMENT; EMPLOYEE has the attributes MgrSalary, and DeptNum and DEPARTMENT has the attribute Director. The operations that can violate the constraint are the update of the salary of the employees in their double role as employee and manager, and the insertion of a new employee Let us suppose that among these, the critical modification to be monitored is the increase in the salary awarded to an employee. Let us also suppose that the reaction policy is to block the update, and to signal this behaviour. These choices correspond to the following trigger, written using the DB2 syntax:

create trigger ExcessiveSalary
after update on Salary of Employee
for each row
when New.Salary > select Salary

from Employee

where EmpNum in

(select Director

from Department

where DeptNum = New.DeptNum)
then signal sqlstate '70005' ('Salary too high')

The rules concerning warehouse management or the handling of suppliers illustrated in Section 12.2.3 and Section 12.3.3, can be considered as other examples of application-specific business rules.

Business rules are particularly advantageous when they express the reactive policies at schema level (and are thus valid for all applications) because they allow an unambiguous and centralized specification. This allows the property of knowledge independence, discussed in the introductory section to this chapter.

12.7 Bibliography

The book by Widom and Ceri (911. contains a thorough description of active database research prototypes, as well as a general introduction to commercial systems and applications. The book includes chapters dedicated to several research prototypes: Postgres, Ariel, Starburst, A-RDL, Chimera, Hipac, and Ode; two chapters also discuss commercial systems and applications. Furthermore, one of the six parts of Zaniolo ct al. [94] is dedicated to active databases. A description of the triggers available in Oracle Server is discussed in their manuals: [65] and [64]. Triggers in IBM DB2 are described by Cochrane, Pirahesh, and Mattos [25], as well as in the book by Chamberlin [20] that gives a complete description of the DB2 system. The possibility of giving a declarative specification and then deriving the active rules was introduced by Ceri and Widom [19]. A methodology for design of databases that makes much use of active rules and also of object-oriented services is described in the book by Ceri and Fraternali [15].

12.8 Exercises

Exercise 12.1 Given the relational schema:

EMPLOYEE(Name, Salary, DeptNum)
DEPARTMENT(DeptNum, ManagerName)

define the following active rules in Oracle and DB2.

5. A rule that deletes all the employees belonging to a department when that department is deleted.

6. A rule that reacts to the deletion of the employee who is manager in a department by deleting that department and all its employees.
7. A rule that, each time that salary of an employee becomes higher than that of his or her manager, makes that salary equal to that of the manager.

8. A rule that, each time the salaries are modified, verifies that there are no departments in which the average salary increases more that three percents and in this case cancels the modification.
9. A rule that, each time that the salaries are modified, verifies their average and if it is higher than 50 thousand, deletes all the employees whose salaries have been modified and are higher than 80 thousand.

Exercise 12.2 Referring to the active database system in Exercise 12.1 consider a database state with eight employees: Glenna, Mary, Tom, Bob, Andrew. Gary, Sandro and Clara, in which:

· Glenna is manager of department 1:

· Mary is manager of department 2, in which Tom and Andrew work;

· Gary is manager of department 3. in which Sandro and Clara work;

· Bob is manager of department 4.

Describe a SQL transaction that deletes the employee Glenna and then modifies some of the employees' salaries, thus activating rules 3-5. Describe the behavior of triggers after these modifications: describe the state of the database after each statement and rule execution and at the end of the transaction.

Exercise 12.3 Discuss the properties of termination, confluence and observable determination for the rules of Exercise 12.1
Exercise 12.4 Given the relational schema:

STUDENT(Name, Subject, Supervisor)
PROFESSOR(Name, Subject)
COURSE(Title, Professor)
EXAM(StudentName, CourseTitle)
Describe the triggers that manager the following integrity constraints (business rules):

10. Each student must work in the same area as his or her supervisor.

11. Each student must have taken at least three courses in the subject of his or her supervisor.

12. Each student must have taken the exam for the course taught by his or her supervisor.
Part�
QtyAvbl�
QtyLimit�
QtyReord�
�
1�
200�
150�
100�
�
2�
780�
500�
200�
�
3�
450�
400�
120�
�

Figure 12.1 initial state of the WAREHOUSE table.

Figure 12.2 Cyclic activation graph.

12.12

