
Part I
Relational databases
2
The relational model
Most current database systems are based on the relational model, which was proposed in a scientific publication by E. F. Codd [26] in 1970, with the intention of providing a basis for data independence. The establishment of the relational model as a de facto standard was rather slow, due to its high level of abstraction: efficient solutions were not immediately discovered for relational structures, which were different from those in use at that time. Although the first prototypes of relational systems had already been created in the early seventies, the first relational systems appeared on the market in the early eighties, acquiring a significant share of it only in the mid-eighties.

In this chapter, we illustrate the structural aspects of the model, that is, the way it is used to organize data. After a brief discussion of the various logical models, we show how the concept of a relation can be used to represent the information in a database. Then, we briefly discuss the techniques for the representation of incomplete information and we examine integrity constraints, which allow the specification of additional properties that must be satisfied by the database.

The presentation of the relational model is completed in the next two chapters, the first one dedicated to the principles of query operations on relational databases, and the second one to SQL, the language used in real systems for the definition, updating and querying of relational databases.

2.1 The structure of the relational model

2.1.1 Logical models in database systems

The relational model is based on two concepts, relation and table. which differ in their nature but are highly related. The notion of relation is formal, as it comes from mathematics, in particular from set theory, while the concept of table is simple and intuitive. Their simultaneous presence is probably the major reason for the great success of the relational model. In fact, tables offer a natural understanding even to end users who come across them in many contexts other than in databases. On the other hand, the availability of a clear and simple formalization has allowed the development of a theory to support the model, with very interesting results.

The relational model satisfies the requirement of data independence, as discussed in Chapter 1: users and programmers make reference only to relations (logical or external level), which arc then implemented by means of appropriate physical structures; however, to gain access to the data it is not necessary to know about the physical structures themselves. The relational model was proposed at the end of the sixties in order to provide a higher level of data independence than the network and hierarchical models. These included reference to the underlying structure, by means of the use of pointers and the physical ordering of data.

2.1.2 Relations and tables

Let us recall from basic mathematics courses that, given two sets, D1 and D2, the cartesian product of D1 and D2, , in symbols D1 x D2, is the set of ordered pairs (v1,v2), such that v1, is an element of D1 and v2 is an element of D2. For example, given the sets A = {1,2,4} and B = {a.b}. the cartesian product A x B is the set of all the possible pairs in which the first element belongs to A and the second to B. Since A has three elements and B has two, we have six pairs:

{(1 ,a),(1,b).(2,a),(2,b).(4,a),(4,b)}

In mathematics, a relation on the sets D1 and D2 (called domains of the relation) is a subset of D1 x D2 • Given the sets A and B above, an example relation on A and B consists of the set of pairs
{(1,a),(1,b),(4,b)} .

The above definition does not indicate whether the sets we are considering may be finite or not, and therefore includes the possibility of infinite sets (and thus of infinite relations). In practice, since our databases must be stored in computer systems of finite size, the relations are necessarily finite. At the same time, it can be useful for the domains to have an infinite size (so that it is always possible to assume the existence of a value not present in the database). Thus, we will assume where necessary that our databases are made up of finite relations on possibly infinite domains.

[image: image1.emf] Da Mario Da Mario Da Mario Receipt No: 1357 Receipt No: 2334 Receipt No: 3007 Date: 5/5/92 Date: 4/7/92 Date: 4/8/92 3 covers 3.00 2 covers 2.00 2 covers 3.00 2 hors d 'oeuvre 5.00 2 hors d'oeuvre 2.50 2 hors d'oeuvre 6.00 3 first course 9 .00 2 first course 6.00 3 first course 8.00 2 steak 12.00 2 bream 15.00 1 bream 7.50 2 coffee 2.00 1 salad 3.00 2 coffee 2.00 Total: 29.00 Total: 27.50 Total: 29.50

Figure 2.9 Some receipts

Relations can be represented graphically in table form. The two tables shown in Figure 2.1 describe the cartesian product A x B and the mathematical relation on A and B illustrated above.

[image: image3.emf] 1 a 1 b 2 a 2 b 4 a 4 b 1 a 1 b 4 b

Figure 2.1 Representation in table form of a cartesian product and a relation

The definitions of cartesian product and relation refer to two sets, but can be generalized with respect to the number of sets. Given n > 0 sets D1,D2...,Dn, not necessarily distinct, the cartesian product of D1,D2....Dn , represented by D1 x D2 x ... x Dn, is made up of the set of the n-tuples v1,v2....,vn, such that f, belongs to D1, for 1 i n. A mathematical relation on the domains D1,D2,..Dn is a subset of the cartesian product D1 x D2 x ... x Dn. The number n of the components of the cartesian product (and therefore of every n-tuple) is called the degree of the cartesian product and of the relation. The number of elements (that is, of n-tuples) of the relation is, as usual in set theory, the cardinality of the relation. Figure 2.2a shows the tabular representation of a cartesian product on the domains C = {x, y}, D = {a, b, c} and E = {3, 5} with degree 3. Figure 2.2b shows a relation on C x D x £ with degree 3 and cardinality 5.
[image: image4.emf] x a 3 x a 5 x b 3 x b 5 x c 3 x c 5 y a 3 y a 5 y b 3 y b 5 y c 3 y c 5 x a 3

(b)

x a 5 x c 5 y a 3 y c 3 y c 5

(a)

Figure 2.2 A ternary cartesian product and a ternary relation

Relations (and the corresponding tables) can be used to represent data for any application. For example, the relation in Figure 2.3 contains data relating to the results of a set of soccer matches.

It is defined with reference to two domains integer and string, each of which appears twice. The relation is in fact a subset of the cartesian product:

String x String x Integer x Integer

2.1.3 Relations with attributes

We can make various observations about relations and their tabular representations. According to the definition, a mathematical relation is a set of ordered n-tuples (v1,v2.....vn) with v1  D1, v2  D2. vn Dn. With reference to the use that we make or relations for organizing data in our database, we can say that each n-tuple contains various items of data connected to each other, or rather establishes links between them; for example, the first n-tuple of the relation in Figure 2.3 establishes a relationship between the values Real Madrid, Liverpool, 3, 1, to indicate that the result of the match between Real Madrid and Liverpool is 3 to 1. We can then remember that a relation is a set and therefore:

· there is no defined order between the n-tuples; in the tables that represent them there is obviously a 'presentation' order, but it is immaterial, since two tables with the same rows, but in different order, represent the same relation;

· the n-tuples of a relation are distinct one from the other, since among the elements of a set there cannot be two identical elements; therefore a table can represent a relation only if its rows are different from one another.

At the same time, each n-tuple has an ordering: the i-th value of each one comes from the i-th domain. This is essential for understanding the meaning of the data in the relation: if we were to swap the third and fourth components around in the relation in Figure 2.3, it would completely change the meaning of our relation, in that the results of the matches would be inverted. This happens because each of the two domains integer and string appears twice in the relation, and the two occurrences are distinguished on the basis of their positions: the first appearance of the domain string refers to the home team, and the second to the visiting team: similarly, the two occurrences of the domain integer.
[image: image5.emf] Real Madrid Liverpool 3 1 Liverpool Milan 2 0 Real Madrid Roma 1 2 Roma Milan 0 1

Figure 2.3 A relation with the results of soccer matches

[image: image6.emf] HomeTeam VisitlngTeam HomeGoals VisitorGoals Real Madrid l Liverpool 3 1 Liverpool Milan 2 0 Real Madrid Roma 1 2 Roma Milan 0 1

Figure 2.4 A relation with attributes.

This ordering among the domains of a relation actually corresponds to an unsatisfactory characteristic of the concept of relation as defined in mathematics with regard to the possibility of organizing and using data. Indeed, in computer science there is a tendency to prefer non-positional notations to positional ones; the former allows reference to the fields of a record by means of symbolic names, while the latter refers to the same fields through their ordering, and should be used only when the ordering corresponds to an intrinsic feature, as happens, for example, in numerical analysis problems, in which arrays offer an obvious and direct representation of vectors and matrices. The data that we wish to organize in the relations of our databases has a structure that is very similar to that of records: a relation is substantially a set of homogenous records, that is, defined on the same fields. For this reason, we introduce a non-positional notation, by associating names with the domains in a relation, referred to as attributes, which describe the 'roles' played by the domains. For example, for the relation concerning the matches, we can use names such as HomeTeam. VisitingTeam, HomeGoals, VisitorGoals; in the tabular representation, we use the attributes as column headings (Figure 2.4). Given the necessity of identifying the components unambiguously, the attributes of a relation (and therefore the column headings) must be different from each other.

By modifying the definition of relation with the introduction of attributes, and still before giving the formal definition, we can see that the ordering of attributes (and of the columns in the tabular representation) is irrelevant: it is no longer necessary to speak of first domain, second domain, and so on; it is sufficient to refer to the attributes. Figure 3.5 shows another tabular representation of the relation in Figure 2.4, with the attributes, and therefore the columns, in a different order (after the American style in which the home team is shown after the visiting team).

To formalize the concepts, let us establish the correspondence between attributes and domains by means of a function DOM : X —> D, which associates with each attribute A  X a domain DOM(A)  D. Then, let us say that a tuple on a set of attributes X is a function t, which associates with each attribute A  X a value of the domain DOM(A). We can therefore give the new definition of relation: a relation on X is a set of tuples on X. The difference between this definition and the traditional one of set theory resides only in the definition of tuple: in a mathematical relation we have n-tuples whose elements are distinguished by position, whereas, in the new definition, the elements are distinguished by the attributes, that is, by a non-positional technique. From now on, we will use the term 'relation' to refer to the new non-positional definition.

Let us introduce a useful notation that we will use frequently in the future. If t is a tuple on X and A  X then t (A) (or t.A) indicates the value of t on A. For example, if t is the first tuple of the relation in Figure 2.5, we can say that

t(VistingTeam)| = Liverpool
The same notation is also used for sets of attributes, in which case it denotes a tuple:

t (VisitingTeam, VisitorGoals) is a tuple on two attributes.

[image: image7.emf] VlsitingTeam HomeTeam VisitorGoals HomeGoals Liverpool Real Madrid 1 3 Milan Liverpool 0 2 Roma Real Madrid 2 1 Milan Roma 1 0

Figure 2.5 Another representation of the relation in Figure 2.4.

2.1.4 Relations and databases

As we have already seen, a relation can be used to organize relevant data for an application. However, a single relation is not usually sufficient for this purpose: a database is generally made up of several relations, whose tuples contain common values where this is necessary in order to establish correspondences. Let us explore this concept more thoroughly by commenting on the database in Figure 2.6:

· the first relation contains information relating to a set of students, with registration numbers (RegNum), surnames (Surname), first names (FirstName) and dates of birth (BirthDate);

· the third relation contains information on some courses, with code, title and tutor;

· the second relation contains information relating to exams: the student's registration number, the course code and the grade achieved; this relation makes reference to the data contained in the other two: to the students, by means of the registration number, and to the courses, by means of their codes.

The database in Figure 2.6 shows one of the fundamental characteristics of the relational model, which is often expressed by saying that it is 'value-based': the references between data in different relations are represented by means of the values of the domains that appear in the tuples. Instead the network and hierarchical models, which were defined before the relational model, represent references explicitly by means of pointers and for this reason are called 'pointer-based' models. Since in this book we do not have a detailed presentation of these models, we briefly comment here on the fundamental characteristics of a simple model with pointers. Figure 2.7 shows the same database as that in Figure 2.6, where we have used pointers instead of value-based references (the registration numbers of the students and the course codes).

Compared with a pointer-based model, the relational model has several advantages:

· the logical representation of data (consisting only of values) makes no reference to the physical one, which can also vary with time: the relational model therefore allows physical data independence;

· it represents only what is relevant from the point of view of the application (the user); the pointers arc additional, related to implement-atioiul aspects; in the models with pointers, the application programmer has to refer to data that is not significant for the application;

· given that all of the information is contained in the values, it is relatively simple to transfer the data from one context to another (for example, if it is necessary to move the database from one system to another); with pointers the operation is more complex, because the pointers have a meaning that is local to each system, and so cannot be just exported directly.

[image: image8.emf]

STUDENTS

EXAMS

COURSES

RegNum Surname Fi rstName BirthDate 27654S Smith Mary 25/11/1980 485745 Black Anna 23/04/1981 200768 Verdi Pao l o 12/02/1981 587614 Smith Lucy 10/10/1980 937653 Brown Mavis 01/12/1980

Student Grade Course 276545 C 01 276 S4S B 04 937653 B 01 200768 B 04

Code Title Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

Figure 2.6 A relational database

Note that, even in a relational database, on the physical level, the data can be represented by techniques that require the use of pointers. The difference, with regard to pointer-based models, is that the pointers arc not visible at the logical level. Furthermore, in the object database systems, which represent one of the evolutionary directions of databases discussed in Chapter 11, object-identifiers show some of the characteristics of pointers, although at a higher level of abstraction.

We can recap at this point the definitions of the relational model, with a few details, distinguishing the levels of the schemas from those of the instances.

· A relation schema consists of a symbol, called name of the relation R and a set of (names of) attributes X = {A1,A2,...,An}. the whole usually indicated R(X). A domain is associated with each attribute.

· A database schema consists of a set of relation schemas with different names:

R = {R1(X1),R2(X2),...,Rn(Xn)}

· A relation instance (or simply relation) on a schema R(X) is a set r of tuples on X.
· A database instance (or simply database) on a schema R = {R1(X1),R2(X2),...,Rn(Xn)} is a set of relations r= (r,, r2.....rn}, where every ri, for 1  i  n, is a relation on the schema R1(Xt).
· To give an example, we can say that the database schema in Figure 2.6 is:

R = {STUDENTS(RegNum, Surname, FirstName, BirthDate),
EXAMS(Student, Grade, Course),
COURSES(Code, Title, Tutor)}
For convenience, we summarize the conventions that we adopt hereafter (and that we have already used in the definitions and in the examples):

[image: image44.emf] RegNum Surnam e FirstName BirthDate 200768 Verdi Paolo 12/02/1981 9376S3 Smith Lucy 10/10/1980 9376S3 Brown Mavis 01/12/1980

STUDENTS

Student Grade Honours Course 200768 K 05 937653 B honours 01 937653 A honours 04 276545 C 01

EXAMS COURSES

Code Tide Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

Figure 2.14 A database with incorrect information.

· the attributes (when they do not use significant names from the application point of view) will be indicated by letters near the beginning of the alphabet in capitals, possibly with a superscript or a subscript: A, B, C, A' , A1, ...;

[image: image2.emf] RegNum Surname FirstName BirthDate 276545 Smith Mary 25/11/1980 485745 Black Anna 23/04/1981 200768 Verdi Paolo 12/02/1981 587614 Smith Lucy 10/10/1980 937653 Brown Mavis 01/12/1980

RegNum 276545 485745 937653

Figure 2.8 A relation on a single attribute

STUDENTS

WORKERS

· sets of attributes will be indicated by letters near the end of the alphabet in capitals: X, Y, Z. X', X1,... ; a set whose components we wish to highlight will be denoted by the juxtaposition of the names of the attributes themselves: we will write X = ABC rather than X = {A,B,C}: similarly, the union of sets will be denoted by the juxtaposition of the corresponding names: we will write XY rather than X (Y; combining the two conventions, we will write XA instead of X ({A};
· for the relation names we will use the letter(s) R (and S) in capitals: R1, S, S' ...; for the relation instances, we will use the same symbols as the corresponding relation names, but in lower case.

In order to illustrate further the fundamental concepts of the relational model, let us discuss two more examples.

First we will note how relations on a single attribute are admissible. This makes particular sense in databases consisting of several relations, in which a relation on a single attribute contains values that appear as values of an attribute of another relation. For example, in a database in which the relation STUDENTS is shown in Figure 2.6, it is possible to use another relation on a single attribute. RegNum, to indicate the students who arc also workers (by means of the relevant RegNum, which must appear in the relation STUDENTS) (see Figure 2.8).

Let us now look at a more complex example, which shows how the relational model allows the representation of information with a detailed structure. In Figure 2.9, three receipts from a restaurant are shown. They have a structure that (apart from the preprinted phrases in bold) includes some atomic information (number, date and total) and a variable number of lines, each referring to a homogenous group of dishes (with quantity, description and overall cost). Since our relations have a fixed structure, it is not possible to represent the group of receipts with a single relation: it would not be possible to represent a number of dishes that is not known in advance. We can. however, represent the same information by means of two relations, as shown in Figure 2.10: the relation RECEIPTS contains the data shown only once in each receipt (number, date and total) and the relation DETAILS contains the various lines of each receipt (with quantity, description and overall cost), associated with the same receipt, by means of the appropriate receipt number.

[image: image9.emf]

Figure 2.7 A database with pointers.

RegNum Surname FirstName BinhDate 276 5 4 5 Smith Mary 25/11/1980 485745 Black Anna 23/04/1981 200768 Verdi Paolo 12/02/1981 587614 Smith Lucy 10/10/1980 937653 Brown Mavis 01/12/1980

Student Grade Course C B B B

Code Tide Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

[image: image10.emf] Number Date Total 1 3 5 7 2334 3007 5/5/92 4/7/92 4/8/92 29.00 27.50 29.50

Number Line Quantity Description Cost 1 357 1 3 covers 3.00 1357 2 2 h ors d ’oeuvre oeuvre 5 . 00 1357 3 3 first course 9.00 1 3 5 7 4 2 steak 12.00 2334 1 2 covers 2.00 2334 2 2 hors d'oeuvre 2.50 2334 3 2 first course 6.00 2334 4 2 bream 15.00 2334 5 2 coffee 1 . 00 3007 1 2 covers 3.00 3007 2 2 hors d'oeuvre 6.00 3007 3 3 first course 8.00 3007 4 1 bream 7.50 3007 5 1 salad 3.00 3007 6 2 coffee 1 . 00

RECEIPTS

DETA ILS

Figure 2.11 Another database for the receipts

We should point out here that for the database in Figure 2.10 to represent the receipts correctly, two conditions must be satisfied:

· it is not necessary to keep track of the order in which the lines appear on each receipt; in fact, since no order is defined among the tuples of a relation, the tuples in DETAILS are not in any fixed order;

· • no duplicate lines appear on any receipt (which could happen in the case of different orders for the same dishes with the same quantity).
Both problems can be resolved by adding an attribute, which indicates the position of the line of the receipt (see Figure 2.11); in this way it is always possible to reconstruct perfectly the contents of all the receipts. In general, we can say that the solution to Figure 2.10 is preferable when the information on the receipt is of interest only for its own sake (and in the receipts there arc no repeated lines), while that in Figure 2.11 makes it possible to keep track of the actual layout of each receipt. The example demonstrates that in a given situation, the data to be represented in the database can be different according to the specific requirements of the application.

2.1.5 Incomplete information and null values

The structure of the relational model, as discussed in the preceding sections, is very simple and powerful. At the same time, however, it imposes a certain degree or rigidity, in that the information must be represented by means of homogenous tuples of data: in particular, in any relation we can represent only tuples corresponding to the schema of the relation. In fact, in many cases, the available data might not correspond exactly to the chosen format. For example, consider the relation schema:

PERSONS (Surname, FirstName, Address, Telephone)

The value of the attribute Telephone might not be available for all the tuples. It is worth noting that it would not be correct to use a value of the domain to represent an absence of information, as this would generate confusion. In this case, supposing the telephone numbers to be represented by integers, we could, for example, use zero to indicate the absence of the significant value. In general, however, this choice is unsatisfactory, for two reasons.

[image: image11.emf] Number Daw Total I357 5/5/92 29.00 2334 4/7/92 27.50 3007 4/8/92 29.50

Number Quantity Description Cost 1357 3 covers 3.00 1357 2 hors d'oeuvre 5.00 1357 3 first course 9.00 1357 2 steak 12.00 2334 2 covers 2.00 2334 2 hors d'oeuvre 2.50 2334 2 first course 6.00 2334 2 bream 15.00 2334 2 coffee 2.00 3007 2 covers 3.00 3007 2 hors d'oeuvre 6.00 3007 3 first course 8.00 3007 1 bream 7.50 3007 1 salad 3.00 3007 2 coffee L 00

RECEIPTS

DETAILS

Figure 2.10 A database for the receip ts in Figure 2.9

In the first place, it requires the existence of a value of the domain never used for significant values: in the case of telephone numbers, zero is clearly distinguishable, but in other cases there exists no available value for this purpose; for example, in an attribute that represents the date of birth and that uses as a domain a type Date correctly defined, there are no 'unused' elements that would therefore be usable to denote absence of information.

In the second place, the use of domain values can generate confusion: the distinction between actually significant values and fictitious ones ('place​holders') is hidden, and therefore the programs that have access to the database must take this into account, distinguishing among them (and keeping track of which are the fictitious values in each case).

In order to represent simply, but at the same time conveniently, the no availability of values, the concept of relation is usually extended to include the possibility that a tuple can assume, on each attribute, either a value of the domain, as seen up to now, or a special value, called a null value. The null value denotes an absence of information, and is an additional value, not in the domain. In the tabular representations we will use for the null values the symbol null, as in Figure 2.12, which deals with the addresses of government offices in county towns in Italy. Note that all county towns have local government offices, but other towns do not. With reference to the table in the figure, we can note how in effect the three null values that appear in it are assigned for different reasons, as follows,
· [image: image12.emf] City GovernmentAddress Ro m e Via Quattro Novembre Florence NULL Tivoli NULL Prato NULL

Figure 2.12 A relation with null values

 Florence is a county town and as such must certainly have a local government office. At the moment we do not know its address. The null value is used because the real value cannot be recorded in the database: for this reason we say that it is an unknown value.
· Tivoli is not a county town and therefore has no local government office. Thus the attribute GovernmentAddress can have no value for this tuple. Here the null value denotes the inapplicability of the attribute, or in other words, the non-existence of the value: the value is non-existent.
· The county of Prato has been established very recently and we do not know if the local government office has yet been opened, nor do we know its address (whether already operational or planned). In effect, we do not know if the value exists and, if it exists, we do not know what it is. In fact, we find ourselves in a situation that corresponds to the logical disjunction (the 'or') of the two preceding: the value is either non​existent or unknown. This type of null value is usually called no-information, because it tells us absolutely nothing: the value might or might not exist, and if it exists we don't know what it is.

In relational database systems no hypothesis is made about the meaning of null values; therefore, in practice, we find ourselves in the third situation, that of the no-information value.

For a further reflection on null values, consider now the database in Figure 2.13, which is defined on the same database schema as Figure 2.6. The null value on the date of birth in the first tuple of the relation STUDENTS is more or less admissible, in that one can accept that the information is not essential in this context. However, a null value for the registration number or the course code creates serious problems, since these values, as we have discussed with reference to Figure 2.6 are used to establish correspondences between tuples of different relations. At this point, the presence of null values in the relation EXAMS actually makes the information unusable: for example, the second tuple, with just the grade and two null values, provides no useful information. Thus, the presence of null values in a relation can in some cases generate doubts as to the actual significance and identity of the tuples: the last two tuples of the relation courses can be different or can actually coincide! Hence the necessity for keeping a suitable control over the use of null values in our relations is evident: only certain relation instances should be admitted. In general, when a relation is defined, it is possible to specify that null values are admissible only for some attributes and not for others. At the end of the next section we will present a criterion for the selection of attributes from which null values must be excluded.

2.2 Integrity constraints

The structures or the relational model allow us to organize the information of interest to our applications. In many cases, however, it is not true that every set of tuples in the schema represents information that is correct for the application. We have already discussed the problem briefly with regard to the presence of null values. Now, we will look at the problem in greater detail, initially referring to relations without null values. Let us consider, for example, the database in Figure 2.14 and note in it various situations that should not occur.

[image: image13.emf] RegNum Surname FirstName BirthDate 276545 Smith Mary NULL NULL Black Anna 23/04/1972 NULL Verdi Paolo 12/02/1972

STUDENTS

Student Grade Course 274545 C 01 NULL B NULL 200768 A NULL

Code Tide Tutor 01 Physics Grant 03 Chemistry NULL NULL Chemistry Clark

EXAMS COURSES

Figure 2.13 A database with many null values

For the purpose of this exercise, we will assume that the maximum grade is A, for which 'honours' can be awarded, and the minimum is F.

· In the first tuple of the relation EXAMS we have an exam result of K, which is not admissible, as grades must be between A and F.

· In the second tuple again in the relation EXAMS an honours is shown awarded for an exam for which the grade is B. Honours can be awarded only if the grade is A.
· The last two tuples of the relation STUDENTS contain information on two different students with the same registration number: again an impossible situation, given that the registration number exists for the precise purpose of identifying each student unambiguously.
· The fourth tuple of the relation EXAMS shows, for the attribute Student, a value that does not appear among the registration numbers of the relation STUDENTS: this is also an unacceptable situation, given that the registration number provides us with information only as a link to the corresponding tuple of the relation STUDENTS. Similarly, the first tuple shows a course code that does not appear in the relation COURSES.
In a database, it is essential to avoid situations such as those just described. For this purpose, the concept of integrity constraint was introduced, as a property that must be satisfied by all correct database instances. Each constraint must be seen as a predicate, which associates the value true or false with each instance. In general, we associate a collection of constraints with a database schema and we consider correct (or legal) the instances that satisfy all the constraints. In each of the four cases discussed above, a constraint would prohibit the undesirable situation.

It is possible to classify the constraints according to the elements of the database that are involved in it. There are two categories, the first of which has some particular subcases.

· A constraint is intra-relational if its satisfaction is defined with regard to a single relation of the database; the first three cases above correspond to intra-relational constraints; in some cases, the definition of the constraint considers the tuples (or even the values) separately from each other.
· A tuple constraint is a constraint that can be evaluated on each tuple independently from the others: the constraints relating to the first two cases fall into this category.

· As a still more specific case, a constraint defined with reference to single values (as in the first example in which, for the attribute Grade, only values between A and F are allowed) is called a value constraint or domain constraint, given that it imposes a restriction on the domain of the attribute.

· A constraint is inter-relational if it involves more that one relation; this is seen in the fourth example, in which the unacceptable situation can be prohibited by requesting that a RegNum appears in the relation EXAMS only if it appears in the relation STUDENTS.
In the following sections we will examine tuple constraints, key constraints, which are the most important intra-relational constraints, and referential constraints, which are the most important inter-relational constraints.

2.2.1 Tuple constraints

As we have said, tuple constraints express conditions on the values of each tuple, independently of other tuples.

A possible syntax for these constraints permits the definition of Boolean expressions (that is, with connectives AND, OR and NOT) with atoms that compare values of attributes (or arithmetical expressions using values of attributes). The violated constraints in the first two examples are described by the following expressions:

(Grade >= A) AND (Grade <= F) (NOT (Honours = 'honours')) OR (Grade = A)

In particular, the second constraint indicates that 'honours' is admissible only if the grade is equal to A (saying that either there is no honours, or the grade is equal to A, or both). The first constraint is in fact a domain constraint, given that it involves a single attribute.

The definition we have given also admits more complex expressions, provided that they are defined on the values of single tuples. For example, on a relation on the schema:

PAYMENTS(Date, Amount, Deductions, Net)

it is possible to define the constraint that imposes the condition that the net amount is equal to the difference between the total amount and the deductions, in the following manner:

Net = Amount - Deductions

2.2.2 Keys

[image: image14.emf] RegNum Surnam e FirstName BirthDate 200768 Verdi Paolo 12/02/1981 9376S3 Smith Lucy 10/10/1980 9376S3 Brown Mavis 01/12/1980

STUDENTS

Student Grade Honours Course 200768 K 05 937653 B honours 01 937653 A honours 04 276545 C 01

EXAMS COURSES

Code Tide Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

Figure 2.14 A database with incorrect information.

In this section we will discuss key constraints, which are undoubtedly the most important of the relational model; we could even go so far as to say that without them the model itself would have no sense. Let us begin with an example. In the relation in Figure 2.15, the values of the various tuples on the attribute RegNum are all different from each other: the value of the RegNum unambiguously identifies the students; the very idea of the registration number itself was introduced many years ago, well before the introduction of databases, precisely in order to have a simple and effective tool for referring to the students in an unambiguous way. Similarly, in the relation there are no pairs of tuples with the same values on any of the three attributes Surname. FtrstName and BirthDate: these pieces of information also identify each person unambiguously.
 Other sets of attributes also identify unambiguously the tuples of the relation in Figure 2.15: for example, the pair RegNum and DegreeProg, given that RegNum is sufficient on its own.

Intuitively, a key is a set or attributes used to identify unambiguously the tuples in a relation. More precisely:

· a set of attributes K is a superkey for a relation r if r does not contain two distinct tuples t1 and t2 with t1(K) = t2(K)

· a set of attributes K is a key for r if K is a minimal superkey (that is, there exists no other superkey K' of r that is contained in K as proper subset).

In the example, in Figure 2.15:

· the set RegNum is a superkey; it is also a minimal superkey, given that it contains a sole attribute and thus we can conclude that RegNum is a key;

· the set Surname. FirstName, BirthDate is a superkey; furthermore, none of its subsets is a superkey: in fact there are two equal tuples (the first and second) on Surname and BirthDate, two (the last) equal on Surname and FirstName and two (the third and fourth) equal on FirstName and BirthDate; thus Surname, FirstName. BirthDate is another key;

· the set RegNum, DegreeProg is a superkey, as we have seen; however it is not a minimal superkey, because one of its proper subsets, RegNum, is itself a minimal superkey, and thus RegNum, DegreeProg is not a key;

· the set FirstName, DegreeProg is not a superkey, because there are two tuples in the relation, the last two equal, on both FirstName and DegreeProg.

[image: image15.emf] RegNum Surname FirstName BirthDate DegreeProg 284328 Smith Luigi 29/04/59 Computing 296328 Smith John 29/04/59 Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy 0I/05/61 Fine Art 965536 Black Lucy 05/03/58 Fine Art

Figure 2. 15 A relation to illustrate keys

In order to discuss the subject in more depth, let us examine another relation, that shown in Figure 2.16. It contains no pair of tuples that agree on both Surname and DegreeProg. Thus, for this relation, the set Surname. DegreeProg is a superkey since there are tuples that agree on Surname (the first two) and on DegreeProg (the second and the fourth), this set is a minimal superkey and therefore a key. Now, in this relation, Surname and DegreeProg identify the tuples unambiguously; but can we say that this is true in general? Certainly not, given that there could easily be students with the same surname enrolled on the same degree program.

Thus we can say that Surname, DegreeProg is 'by chance' a key for the relation in Figure 2.16, while we are interested in the keys corresponding to integrity constraints, satisfied by all the legal relations on a certain schema. When defining a schema, we associate with it constraints that describe properties in the real world, for which information is held in our database. The constraints are defined at the schema level, with reference to all the instances that must satisfy all the constraints. A correct instance can then satisfy other constraints beyond those defined in the schema. For example with a schema:

STUDENTS{RegNum,Surname, FirstName,BirthDate, DegreeProg)

are associated the constraints that impose as keys the two sets of attributes discussed above:

RegNum, Surname, FirstName, BirthDate

Both the relations in Figure 2.15 and Figure 2.16 satisfy both the constraints; the second also satisfies ('by chance', as we said) the constraint that says that Surname. DegreeProg is another key.

We can now make some observations about keys, which justify the importance attributed to them. In the first place, we can note how each relation always has a key. A relation is a set. and thus is made up of elements that are different from each other; as a consequence, for each relation r(X), the set X of all the attributes is a superkey for it. Now there are two cases: either such a set is also a key, so confirming the existence of the key itself, or it is not a key, because there exists another superkey contained within it; then we can proceed by repeating the same argument on this new set and so on; since the set of attributes involved in a relation is finite, the process terminates in a finite number of steps with a minimal superkey. Thus, we can conclude that every relation has a key.

The fact that at least one key can be defined for each relation guarantees access to all the values of a database and their unambiguous identification. Moreover, it allows the effective establishment of the links between data contained in different relations, which characterize the relational model as a 'value-based' model. Let us look again at the example in Figure 2.6. In the relation EXAMS, reference is made to the students by means of RegNum, and to the courses by means of the respective codes: in effect. RegNum is the key of the relation STUDENTS and Code is the key of the relation COURSES. So the values of the key attributes are indeed used to refer to the content of each of the relations from outside (that is, from other relations).

2.2.3 Keys and null values

[image: image16.emf] RegNum Surname FirstNam e BirthDate DegreeProg 296328 Smith John 29/04/59 Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy 01/05/61 Fine Art 96S536 Black Lucy 05/03/58 Engineering

Figure 2.16 Another relation to illustrate keys

We can now return to the discussion initiated at the end of Section 2.1.5, regarding the necessity of avoiding the proliferation of null values in our relations. In particular, we will note how, in the presence of null values for key values, it is no longer true that the values of the keys permit the unambiguous identification of the tuples of the relations and to establish connections between tuples of different relations. To this end, consider the relation in Figure 2. 17, defined on the same schema as the relation in Figure 2.16. It has two keys, one made up of the sole attribute RegNum and the other of the attributes Surname, FirstName and BirthDate. The first tuple has null values under RegNum and BirthDate and therefore on at least one attribute of each key: this tuple is not identifiable in any possible way; in particular, if we want to insert another tuple into the database relating to a student named John Smith, then we cannot know if we are in fact referring to the same student or to another. Furthermore, it is not possible to refer to this tuple in other relations of the database, since this must be done by means of the value of a key. The last two tuples also present a problem: in spite of the fact that each of them has a key with no nulls (RegNum in the third tuple and Surname, FirstName, BirthDate in the last), the presence of null values makes it impossible to know if the two tuples refer to two different students or the same one.

[image: image17.emf] RegNum Surname FirstName BirthDate DegreeProg NULL Smith John NULL Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy NULL NULL NULL Black Lucy 05/03/53 Engineering

Figure 2.17 A relation with null values on all the keys

The example clearly suggests the necessity of limiting the presence of null values in the keys of relations. In practice, we adopt a simple solution, which makes it possible to guarantee the unambiguous identification of each tuple and refer to it from within other relations: null values are forbidden on one of the keys (called the primary key) and usually (that is, unless specified otherwise) allowed on the others. The attributes that make up the primary key are often underlined, as shown in Figure 2.18. Most of the references between relations are realized through the values of the primary key.

It is worth noting that in most real cases it is possible to find attributes whose values arc available for a primary key. However, in some cases this does not happen and it becomes necessary to introduce an additional code attribute that is generated and associated with each tuple at the time of insertion. Note that many identifying codes (including, for example, student registration numbers and social security numbers) were introduced in the past, before the invention or the widespread adoption of databases, precisely to guarantee the unambiguous identification of the subject of a domain (respectively the students and the citizens) and to simplify the reference to them - precisely the goals of keys.

2.2.4 Referential constraints

[image: image18.emf] ReiNum Surname FiritName BirthDate DegreeProg 643976 Smith John NULL Computing S876I4 Smith Lucy 01/05/61 Engineering 934856 Black Lucy NULL NULL 735591 Black Lucy 05/03/58 Engineering

Figure 2.18 A relation with a primary key

In order to discuss the most important class of inter-relational constraints, let us consider the database in Figure 2.19. In it, the first relation contains information relating to a set of traffic offences, the second to the police officers who have made the charges and the third to a set of motor vehicles. The information in the relation OFFENCES is given meaning and completeness through reference to the other two relations; to the relation OFFICERS, by means of the attribute Officer, which contains registration numbers (RegNum) of officers corresponding to the primary key of the relation OFFICERS, and to the relation CARS by means of the attributes Registration and Department
, which contain values that form the primary keys of the relation CARS. The references are significant in that the values in the relation OFFENCES are equal to values actually present in the other two: if a value of Officer in OFFENCES does not appear as a value of the key of OFFICERS, then the reference is not effective (and so useless). In the example, all the references are actually usable.

A referential constraint (or foreign key) between a set of attributes X of a relation R1, and another relation R2 is satisfied if the values in X of each tuple of the instance of R1 appear as values of the (primary) key of the instance of R2. The precise definition requires a little care, particularly in the case in which the key of the relation referred to consists of more than one attribute and in the case in which there is more than one key. We will proceed in stages, looking first at the case in which the key of R2 is unique and consists of a sole attribute B (and therefore the set X is in its turn made up of a sole attribute A): then, the referential constraint between the attribute A of R1 and the relation R2 is satisfied if. for every tuple t, in R1, such that t1(A) is not null, there exists a tuple t2 in R2 such that t1(A) = t2(B). In the more general case, we must take account of the fact that each of the attributes in X must correspond to a precise attribute of the primary key K of R2. For this, it is necessary to specify an order both in the set X and in K. Indicating the attributes in order. X = A},A2...Ap and K = B1B2..Bp, the constraint is satisfied if, for every tuple t1, in R1 with no nulls in X. there exists a tuple t2 in R2 with t1(A1)= t2(B1), for 1  i p.

On the schema of the database in Figure 2.19 it makes sense to define the referential integrity constraints:

· between the attribute Officer of the relation OFFENCES and the relation OFFICERS;
· between the attributes Registration and Department of OFFENCES and the relation CARS, in which the order of the attributes in the key sees first Registration and then Department.
The database in Figure 2.19 satisfies both constraints, whereas the database in Figure 2.20 violates both. The violations are, firstly, that OFFICERS does not contain a tuple with the value on RegNum equal to 456 and, secondly, that CARS contains no tuple with the value 75 for Department and 6544 XY for Registration (note that there is a tuple with the value 75 for Department and another with the value 6544 XY for Registration, but this is not sufficient, because there is a need for a tuple with both values: only in this way can the two values make reference to a tuple of the relation CARS).
[image: image19.emf]

OFFENCES

OFFICERS CA R S

Code Date Officer Department Registration 143256 25/10/92 567 75 S694 FR 987554 26/10/92 456 75 5694 FR 987557 26/10/92 4S6 75 6544 XY 630876 15/10/92 456 47 6544 XY 539856 12/10/92 S67 47 6544 XY

RegNum Surname FirstNam e 567 Brun Jean 456 Larue Henri 638 Larue Jacques

Registration Department Owner Address 6544 XY 75 Cordon Edouard Rue du Pont 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 75 Latour Hortense Avenue Foch 6544 XY 47 Mimault Bernard Avenue FDR

Fi gure 2.19 A database with referential constraints

With reference to the second constraint, the discussion about the order of the attributes can appear excessive, as the correspondence can be achieved by means of the names of the attributes themselves. In general, however, this need not be possible, and thus the ordering is essential. Let us consider for example, a database containing information on the vehicles involved in road accidents. In particular, let us suppose that we want to include in a relation, together with other information, the Registration and Department of each of the two vehicles involved.
 In this case, we must have two pairs of attributes and two referential constraints. For example, the schema could be:
ACCIDENTS(Code, Dept1, Registration1,Dept2, Registration2 ...)

[image: image20.emf]

OFFENCE

Code Date Officer Department Registration 987554 26/10/92 456 75 6544 XY 630876 I15/10/92 456 47 6544 XY

RegNum Surname FirstName 567 Brun Mavis 638 Lame Jacques

OFFICERS

Regticration Department Owner Address 7122 HT 75 Cordon Edouard Ruedu Pont 5694 FR 91 Latour Hortense Avenue Foch 6544 XY 47 Mimault Bernard Avenue FDR

 CARS

Figure 2.20 A database that violates referential constraints

In this case, it will obviously not be possible to establish the correspondence in the referential constraint to the relation CARS by means of the names of the attributes, in that they are different from those of the primary key cars. Only by means of the ordering does it become possible to specify that the reference associates Dept1 (attribute of accidents) to Department (attribute of the key of CARS) and Registration1 to Registration and. similarly, Dept2 to Department and Registration2 to Registration. The database in Figure 2.21 satisfies the two constraints, while the one in Figure 2.22 satisfies the one relating to Dept1 and Registration1 and violates the other, because in the relation CARS there is no vehicle with the registration 9775 GF and department 93.

A final observation might be useful regarding relations with more than one key. In this case one of the keys should be indicated as the primary key, and it is reasonable that the references should be directed towards it: for this reason, in the specification of the referential constraints, we have been able to omit the explicit mention of the attributes that make up the primary key. Moreover, it should be noted that not all DBMSs on the market allow the explicit indication of the primary key: some allow the specification of more than one key, but not the highlighting of one as a primary key. In these cases, the referential constraint must indicate explicitly the attributes that make up the key to which it refers. For example, let us consider a database on the schema

EMPLOYEES (EmpNum, Surname, FirstName, Department)
 DEPARTMENTS (Code, Name, Location)

[image: image21.emf] Code Dept1 Registration1 Dept2 Regristration2 ... 6207 75 6544 XY 93 9775 GF ... 6974 93 5694 FR 93 9775 GF ...

Registration Department Owner Address 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 93 Latour Hortense Avenue Foch 9775 GF 93 Le B lanc Pierre Rue de la Gare 6544 XY 75 Mimault Bernard Avenue FDR

Figure 2.21 A database with two similar referential constraints

ACCIDENT S

CARS

in which the relation DEPARTMENTS is identified by the attribute Code and, separately, by the attribute Name (no two departments exist with the same code or with the same name). It is convenient that one of the two keys, for example Code, is indicated as a primary, and used to establish references. If, however, the system docs not allow for the concept of a primary key, the constraint must be expressed by the explicit indication of the attributes; we must therefore say that there exists a referential constraint between the attribute Department of the relation EMPLOYEES and the key Code of the relation DEPARTMENTS.
This is the reason why, as we show in Chapter 4, a more detailed specification is offered for the definition referential constraints in relational systems.

2.3 Conclusions

In this chapter we have defined the structures and constraints of the relational model. First we discussed the concept of relation, with some variations with respect to the concepts of set theory. Then, we showed how relations can be used to organize more complex collections of data using the data itself to create references between different components (without the use of explicit pointers). Then, after introducing the necessity for using null values to denote the absence of information, we discussed the concept of integrity constraints through three fundamental classes: tuple constraints, keys and referential constraints.

In the next two chapters, we complete the presentation of the relational model from two points of view:

· • in Chapter 3, we illustrate the foundations of query languages, that is. the languages used to access information in databases;

· • in Chapter 4. we show how all the concepts, those relative to the structures and to the constraints, as discussed in this chapter, and those relative to query languages (Chapter 3) are implemented in commercial DBMSs, using SQL.

2.4 Bibliography

It is worth consulting the original article by Codd [26] that contains the original proposal for the relational model: its motivations and the general presentation of the model are still valid. For this work, Codd received the ACM Turing Award, the most important recognition in the computing field; the discussion he developed in such an occasion is also very interesting [30].

Tsichritzis and Lochovsky [87] offer general and comparative discussions on data models.

[image: image22.emf] Code Dept1 Registration1 Dept2 Regristration2 ... 6207 75 6544 XY 93 9775 GF ... 6974 93 5694 FR 93 9775 GF ...

Registration Department Owner Address 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 93 Latour Hortense Avenue Foch 9775 GF 93 Le B lanc Pierre Rue de la Gare 6544 XY 75 Mimault Bernard Avenue FDR

Figure 2.2 2 A database that violates a referential constraint

ACCIDENT S

CARS

More formal and detailed treatments on the relational model and its associated theory (which is not developed much in this book) are offered by Maier [58], Ullman [88], Paredaens et al. [67], Atzeni and De Antonellis [3], Ablteboul, Hull and Vianu [1]. Interesting discussions on null values, with the various approaches, were developed by Codd [29] and Zaniolo [93].

2.5 Exercises

Exercise 2.1 Describe in words, the information organized in the database in Figure 2.23.

Exercise 2.2 Highlight the keys and the referential constraints that exist in the database in Figure 2.23 and that it is reasonable to assume are satisfied by all the databases in the same schema. Highlight also the attributes on which it could be reasonable to admit null values.

Exercise 2.3 Consider the information for the management of loans from a personal library. The owner lends books to his friends, which he records simply by means of the respective names or nicknames (thus avoiding repetition) and refers to the books by title (not having two books of the same title). When he lends a book, he makes a note of the date planned for its return. Define a relational schema to represent this information, highlighting suitable domains for its various attributes and show an Instance of it in tabular form. Show the key or keys of the relation.

Exercise 2.4 Represent, by means of one or more relations, the information contained in a timetable of departures from a railway station: show the number, time, final destination, category and stops of every departing train.

Exercise 2.5 Define a database schema to organize the information of a company that has employees (each with Social Security Number, surname, first name and date of birth), and subsidiaries (each with code, branch and director, who is an employee). Each employee works for a subsidiary. Indicate the keys and the referential constraints of the schema. Show an instance of the database and check that it satisfies the constraints.

Exercise 2.6 A family tree represents the structure of a family. Show how the information of a family tree can be represented by means of a relational database, possibly starting with a simplified structure, in which only the male line or only the female line is represented (that is, only the offspring of the male or the female members of the family are represented).

Exercise 2.7 For each of the Exercises 2.3-2.6, evaluate the needs for null values, with the related benefits and difficulties.

Exercise 2.8 Define a database schema that organizes the information necessary to generate the radio programs page of a daily newspaper, with stations, times and program titles; besides the name, include the transmission frequency and the location of the radio station.
� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

�There is an overloading in the notation here: if A is an attribute, then t(A) is a value, while if X is a set of attributes, then t(X) is a tuple, that is, a function. Moreover, as we shall see, sets consisting of a single attribute wilt be denoted by the name of the attribute itself; therefore t(A) denotes both a value and a tuple on an attribute. However, the ambiguity will usually be irrelevant

� We assume that first name, surname and date of birth uniquely identify people; this is not true in general, but can be assumed as true within small communities, and it is convenient for the sake of the example.

� This is the way registration numbers for can are organized in France; departments are regions of the country, each with a two-digit code: a registration is nude up of the department code and a string (digits and characters) unique within the department. The example illustrates a key composed of two attributes

� Let us suppose for simplicity's sake that there are always only two vehicles

[image: image23.emf] Code Surname FirstName A 1 02 Harris Lucy B372 Rossini Peter 8543 Johnson Nadia B444 Johnson Luigi S5 55 Rose Jean

Patient Admitted Discharged Ward A 1 02 2/05/94 9/05/94 A A 1 02 2/12/94 2/01/95 A S5 55 5/10/94 3/12/94 B B444 1/12/94 1/01/95 B S5 5 5 5/10/94 1/11/94 A

Number Surname FirstName Ward 203 Black Peter A 574 Bisi Mavis B 461 Boyne Steve B 530 Clark Nicola C 405 Mizzi Nicola A 501 Mount Mavis A

Code Name Consultant A Surgical 203 B Paediatric 574 C Medical 530

Figur e 2.23 A database for Exercise 2.1 and Exercise 2.2.

PATIENT

ADMISSION

DOCTOR

WARD

[image: image24.emf] VlsitingTeam HomeTeam VisitorGoals HomeGoals Liverpool Real Madrid 1 3 Milan Liverpool 0 2 Roma Real Madrid 2 1 Milan Roma 1 0

Figure 2.5 Another representation of the relation in Figure 2.4.

[image: image25.emf] 1 a 1 b 2 a 2 b 4 a 4 b 1 a 1 b 4 b

Figure 2.1 Representation in table form of a cartesian product and a relation

[image: image26.emf]

Figure 2.7 A database with pointers.

RegNum Surname FirstName BinhDate 276 5 4 5 Smith Mary 25/11/1980 485745 Black Anna 23/04/1981 200768 Verdi Paolo 12/02/1981 587614 Smith Lucy 10/10/1980 937653 Brown Mavis 01/12/1980

Student Grade Course C B B B

Code Tide Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

[image: image27.emf] HomeTeam VisitlngTeam HomeGoals VisitorGoals Real Madrid l Liverpool 3 1 Liverpool Milan 2 0 Real Madrid Roma 1 2 Roma Milan 0 1

Figure 2.4 A relation with attributes.

[image: image28.emf]

STUDENTS

EXAMS

COURSES

RegNum Surname Fi rstName BirthDate 27654S Smith Mary 25/11/1980 485745 Black Anna 23/04/1981 200768 Verdi Pao l o 12/02/1981 587614 Smith Lucy 10/10/1980 937653 Brown Mavis 01/12/1980

Student Grade Course 276545 C 01 276 S4S B 04 937653 B 01 200768 B 04

Code Title Tutor 01 Physics Grant 03 Chemistry Beale 04 Chemistry Clark

Figure 2.6 A relational database

[image: image29.emf] Number Date Total 1 3 5 7 2334 3007 5/5/92 4/7/92 4/8/92 29.00 27.50 29.50

Number Line Quantity Description Cost 1 357 1 3 covers 3.00 1357 2 2 h ors d ’oeuvre oeuvre 5 . 00 1357 3 3 first course 9.00 1 3 5 7 4 2 steak 12.00 2334 1 2 covers 2.00 2334 2 2 hors d'oeuvre 2.50 2334 3 2 first course 6.00 2334 4 2 bream 15.00 2334 5 2 coffee 1 . 00 3007 1 2 covers 3.00 3007 2 2 hors d'oeuvre 6.00 3007 3 3 first course 8.00 3007 4 1 bream 7.50 3007 5 1 salad 3.00 3007 6 2 coffee 1 . 00

RECEIPTS

DETA ILS

Figure 2.11 Another database for the receipts

[image: image30.emf] RegNum Surname FirstNam e BirthDate DegreeProg 296328 Smith John 29/04/59 Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy 01/05/61 Fine Art 96S536 Black Lucy 05/03/58 Engineering

Figure 2.16 Another relation to illustrate keys

[image: image31.emf] Real Madrid Liverpool 3 1 Liverpool Milan 2 0 Real Madrid Roma 1 2 Roma Milan 0 1

Figure 2.3 A relation with the results of soccer matches

[image: image32.emf] x a 3 x a 5 x b 3 x b 5 x c 3 x c 5 y a 3 y a 5 y b 3 y b 5 y c 3 y c 5 x a 3

(b)

x a 5 x c 5 y a 3 y c 3 y c 5

(a)

Figure 2.2 A ternary cartesian product and a ternary relation

[image: image33.emf] City GovernmentAddress Ro m e Via Quattro Novembre Florence NULL Tivoli NULL Prato NULL

Figure 2.12 A relation with null values

[image: image34.emf] RegNum Surname FirstName BirthDate DegreeProg 284328 Smith Luigi 29/04/59 Computing 296328 Smith John 29/04/59 Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy 0I/05/61 Fine Art 965536 Black Lucy 05/03/58 Fine Art

Figure 2. 15 A relation to illustrate keys

[image: image35.emf] RegNum Surname FirstName BirthDate 276545 Smith Mary NULL NULL Black Anna 23/04/1972 NULL Verdi Paolo 12/02/1972

STUDENTS

Student Grade Course 274545 C 01 NULL B NULL 200768 A NULL

Code Tide Tutor 01 Physics Grant 03 Chemistry NULL NULL Chemistry Clark

EXAMS COURSES

Figure 2.13 A database with many null values

[image: image36.emf]

OFFENCES

OFFICERS CA R S

Code Date Officer Department Registration 143256 25/10/92 567 75 S694 FR 987554 26/10/92 456 75 5694 FR 987557 26/10/92 4S6 75 6544 XY 630876 15/10/92 456 47 6544 XY 539856 12/10/92 S67 47 6544 XY

RegNum Surname FirstNam e 567 Brun Jean 456 Larue Henri 638 Larue Jacques

Registration Department Owner Address 6544 XY 75 Cordon Edouard Rue du Pont 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 75 Latour Hortense Avenue Foch 6544 XY 47 Mimault Bernard Avenue FDR

Fi gure 2.19 A database with referential constraints

[image: image37.emf] RegNum Surname FirstName BirthDate DegreeProg NULL Smith John NULL Computing 587614 Smith Lucy 01/05/61 Engineering 934856 Black Lucy NULL NULL NULL Black Lucy 05/03/53 Engineering

Figure 2.17 A relation with null values on all the keys

[image: image38.emf] Number Daw Total I357 5/5/92 29.00 2334 4/7/92 27.50 3007 4/8/92 29.50

Number Quantity Description Cost 1357 3 covers 3.00 1357 2 hors d'oeuvre 5.00 1357 3 first course 9.00 1357 2 steak 12.00 2334 2 covers 2.00 2334 2 hors d'oeuvre 2.50 2334 2 first course 6.00 2334 2 bream 15.00 2334 2 coffee 2.00 3007 2 covers 3.00 3007 2 hors d'oeuvre 6.00 3007 3 first course 8.00 3007 1 bream 7.50 3007 1 salad 3.00 3007 2 coffee L 00

RECEIPTS

DETAILS

Figure 2.10 A database for the receip ts in Figure 2.9

[image: image39.emf] ReiNum Surname FiritName BirthDate DegreeProg 643976 Smith John NULL Computing S876I4 Smith Lucy 01/05/61 Engineering 934856 Black Lucy NULL NULL 735591 Black Lucy 05/03/58 Engineering

Figure 2.18 A relation with a primary key

[image: image40.emf]

OFFENCE

Code Date Officer Department Registration 987554 26/10/92 456 75 6544 XY 630876 I15/10/92 456 47 6544 XY

RegNum Surname FirstName 567 Brun Mavis 638 Lame Jacques

OFFICERS

Regticration Department Owner Address 7122 HT 75 Cordon Edouard Ruedu Pont 5694 FR 91 Latour Hortense Avenue Foch 6544 XY 47 Mimault Bernard Avenue FDR

 CARS

Figure 2.20 A database that violates referential constraints

[image: image41.emf] Code Dept1 Registration1 Dept2 Regristration2 ... 6207 75 6544 XY 93 9775 GF ... 6974 93 5694 FR 93 9775 GF ...

Registration Department Owner Address 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 93 Latour Hortense Avenue Foch 9775 GF 93 Le B lanc Pierre Rue de la Gare 6544 XY 75 Mimault Bernard Avenue FDR

Figure 2.21 A database with two similar referential constraints

ACCIDENT S

CARS

[image: image42.emf] Code Surname FirstName A 1 02 Harris Lucy B372 Rossini Peter 8543 Johnson Nadia B444 Johnson Luigi S5 55 Rose Jean

Patient Admitted Discharged Ward A 1 02 2/05/94 9/05/94 A A 1 02 2/12/94 2/01/95 A S5 55 5/10/94 3/12/94 B B444 1/12/94 1/01/95 B S5 5 5 5/10/94 1/11/94 A

Number Surname FirstName Ward 203 Black Peter A 574 Bisi Mavis B 461 Boyne Steve B 530 Clark Nicola C 405 Mizzi Nicola A 501 Mount Mavis A

Code Name Consultant A Surgical 203 B Paediatric 574 C Medical 530

Figur e 2.23 A database for Exercise 2.1 and Exercise 2.2.

PATIENT

ADMISSION

DOCTOR

WARD

[image: image43.emf] Code Dept1 Registration1 Dept2 Regristration2 ... 6207 75 6544 XY 93 9775 GF ... 6974 93 5694 FR 93 9775 GF ...

Registration Department Owner Address 7122 HT 75 Cordon Edouard Rue du Pont 5694 FR 93 Latour Hortense Avenue Foch 9775 GF 93 Le B lanc Pierre Rue de la Gare 6544 XY 75 Mimault Bernard Avenue FDR

Figure 2.2 2 A database that violates a referential constraint

ACCIDENT S

CARS

_1077277741.doc
students

exams

courses

RegNum�

Surname�

FirstName�

BirthDate�

�

27654S�

Smith�

Mary�

25/11/1980�

�

485745�

Black�

Anna�

23/04/1981�

�

200768�

Verdi�

Paolo�

12/02/1981�

�

587614�

Smith�

Lucy�

10/10/1980�

�

937653�

Brown�

Mavis�

01/12/1980�

�

Student�

Grade�

Course�

�

276545�

C�

01�

�

276S4S�

B�

04�

�

937653�

B�

01�

�

200768�

B�

04�

�

Code�

Title�

Tutor�

�

01�

Physics�

Grant�

�

03�

Chemistry�

Beale�

�

04�

Chemistry�

Clark�

�

Figure 2.6 A relational database

_1087217463.doc

Da Mario�

�

Da Mario�

�

Da Mario�

�

Receipt No: 1357�

�

Receipt No: 2334�

�

Receipt No: 3007�

�

Date: 5/5/92�

�

Date: 4/7/92�

�

Date: 4/8/92�

�

3�

covers�

3.00�

�

2�

covers�

2.00�

�

2�

covers�

3.00�

�

2�

hors d'oeuvre�

5.00�

�

2�

hors d'oeuvre�

2.50�

�

2�

hors d'oeuvre�

6.00�

�

3�

first course�

9.00�

�

2�

first course�

6.00�

�

3�

first course�

8.00�

�

2�

steak�

12.00�

�

2�

bream�

15.00�

�

1�

bream�

7.50�

�

�

�

�

�

2�

coffee�

2.00�

�

1�

salad�

3.00�

�

�

�

�

�

�

�

�

�

2�

coffee�

2.00�

�

Total:�

29.00�

�

Total:�

27.50�

�

Total:�

29.50�

�

Figure 2.9 Some receipts

_1087217775.doc

[image: image1]

x�

a�

3�

�

x�

a�

5�

�

x�

b�

3�

�

x�

b�

5�

�

x�

c�

3�

�

x�

c�

5�

�

y�

a�

3�

�

y�

a�

5�

�

y�

b�

3�

�

y�

b�

5�

�

y�

c�

3�

�

y�

c�

5�

�

x�

a�

3�

�

(b)

x�

a�

5�

�

x�

c�

5�

�

y�

a�

3�

�

y�

c�

3�

�

y�

c�

5�

�

(a)

Figure 2.2 A ternary cartesian product and a ternary relation

_1087217852.doc
		1

		a

		1

		b

		2

		a

		2

		b

		4

		a

		4

		b

		1

		a

		1

		b

		4

		b

Figure 2.1 Representation in table form of a cartesian product and a relation

_1087217618.doc

Number�

Date�

Total�

�

1357 2334 3007�

5/5/92 4/7/92 4/8/92�

29.00 27.50 29.50�

�

Number�

Line�

Quantity�

Description�

Cost�

�

1357�

1�

3�

covers�

3.00�

�

1357�

2�

2�

hors d’oeuvre oeuvre�

5.00�

�

1357�

3�

3�

first course�

9.00�

�

1357�

4�

2�

steak�

12.00�

�

2334�

1�

2�

covers�

2.00�

�

2334�

2�

2�

hors d'oeuvre�

2.50�

�

2334�

3�

2�

first course�

6.00�

�

2334�

4�

2�

bream�

15.00�

�

2334�

5�

2�

coffee�

1.00�

�

3007�

1�

2�

covers�

3.00�

�

3007�

2�

2�

hors d'oeuvre�

6.00�

�

3007�

3�

3�

first course�

8.00�

�

3007�

4�

1�

bream�

7.50�

�

3007�

5�

1�

salad�

3.00�

�

3007�

6�

2�

coffee�

1.00�

�

RECEIPTS

details

Figure 2.11 Another database for the receipts

_1087217555.doc

Number�

Daw�

Total�

�

I357�

5/5/92�

29.00�

�

2334�

4/7/92�

27.50�

�

3007�

4/8/92�

29.50�

�

Number�

Quantity�

Description�

Cost�

�

1357�

3�

covers�

3.00�

�

1357�

2�

hors d'oeuvre�

5.00�

�

1357�

3�

first course�

9.00�

�

1357�

2�

steak�

12.00�

�

2334�

2�

covers�

2.00�

�

2334�

2�

hors d'oeuvre�

2.50�

�

2334�

2�

first course�

6.00�

�

2334�

2�

bream�

15.00�

�

2334�

2�

coffee�

2.00�

�

3007�

2�

covers�

3.00�

�

3007�

2�

hors d'oeuvre�

6.00�

�

3007�

3�

first course�

8.00�

�

3007�

1�

bream�

7.50�

�

3007�

1�

salad�

3.00�

�

3007�

2�

coffee�

L00�

�

receipts

details

Figure 2.10 A database for the receipts in Figure 2.9

_1077296732.doc

RegNum�

Surname�

FirstName�

BirthDate�

DegreeProg�

�

NULL�

Smith�

John�

NULL�

Computing�

�

587614�

Smith�

Lucy�

01/05/61�

Engineering�

�

934856�

Black�

Lucy�

NULL�

NULL�

�

NULL�

Black�

Lucy�

05/03/53�

Engineering�

�

Figure 2.17 A relation with null values on all the keys

_1077297380.doc

Code�

Dept1�

Registration1�

Dept2�

Regristration2�

...�

�

6207�

75�

6544 XY�

93�

9775 GF�

...�

�

6974�

93�

5694 FR�

93�

9775 GF�

...�

�

Registration�

Department�

Owner�

Address�

�

7122 HT�

75�

Cordon Edouard�

Rue du Pont�

�

5694 FR�

93�

Latour Hortense�

Avenue Foch�

�

9775 GF�

93�

Le Blanc Pierre�

Rue de la Gare�

�

6544 XY�

75�

Mimault Bernard�

Avenue FDR�

�

Figure 2.21 A database with two similar referential constraints

ACCIDENTS

CARS

_1087217446.doc

RegNum�

Surname�

FirstName�

BirthDate�

�

276545�

Smith�

Mary�

25/11/1980�

�

485745�

Black�

Anna�

23/04/1981�

�

200768�

Verdi�

Paolo�

12/02/1981�

�

587614�

Smith�

Lucy�

10/10/1980�

�

937653�

Brown�

Mavis�

01/12/1980�

�

RegNum�

�

276545�

�

485745�

�

937653�

�

Figure 2.8 A relation on a single attribute

students

WORKERS

_1077298387.doc

Code�

Surname�

FirstName�

�

A102�

Harris�

Lucy�

�

B372�

Rossini�

Peter�

�

8543�

Johnson�

Nadia�

�

B444�

Johnson�

Luigi�

�

S555�

Rose�

Jean�

�

Patient�

Admitted�

Discharged�

Ward�

�

A102�

2/05/94�

9/05/94�

A�

�

A102�

2/12/94�

2/01/95�

A�

�

S555�

5/10/94�

3/12/94�

B�

�

B444�

1/12/94�

1/01/95�

B�

�

S555�

5/10/94�

1/11/94�

A�

�

Number�

Surname�

FirstName�

Ward�

�

203�

Black�

Peter�

A�

�

574�

Bisi�

Mavis�

B�

�

461�

Boyne�

Steve�

B�

�

530�

Clark�

Nicola�

C�

�

405�

Mizzi�

Nicola�

A�

�

501�

Mount�

Mavis�

A�

�

Code�

Name�

Consultant�

�

A�

Surgical�

203�

�

B�

Paediatric�

574�

�

C�

Medical�

530�

�

Figure 2.23 A database for Exercise 2.1 and Exercise 2.2.

PATIENT

ADMISSION

DOCTOR

WARD

_1077296843.doc
OFFENCES

OFFICERS

CARS

Code�

Date�

Officer�

Department�

Registration�

�

143256�

25/10/92�

567�

75�

S694 FR�

�

987554�

26/10/92�

456�

75�

5694 FR�

�

987557�

26/10/92�

4S6�

75�

6544 XY�

�

630876�

15/10/92�

456�

47�

6544 XY�

�

539856�

12/10/92�

S67�

47�

6544 XY�

�

RegNum�

Surname�

FirstName�

�

567�

Brun�

Jean�

�

456�

Larue�

Henri�

�

638�

Larue�

Jacques�

�

Registration�

Department�

Owner�

Address�

�

6544 XY�

75�

Cordon Edouard�

Rue du Pont�

�

7122 HT�

75�

Cordon Edouard�

Rue du Pont�

�

5694 FR�

75�

Latour Hortense�

Avenue Foch�

�

6544 XY�

47�

Mimault Bernard�

Avenue FDR�

�

Figure 2.19 A database with referential constraints

_1077295599.doc

RegNum�

Surname�

FirstName�

BirthDate�

DegreeProg�

�

284328�

Smith�

Luigi�

29/04/59�

Computing�

�

296328�

Smith�

John�

29/04/59�

Computing�

�

587614�

Smith�

Lucy�

01/05/61�

Engineering�

�

934856�

Black�

Lucy�

0I/05/61�

Fine Art�

�

965536�

Black�

Lucy�

05/03/58�

Fine Art�

�

Figure 2.15 A relation to illustrate keys

_1077295808.doc

RegNum�

Surname�

FirstName�

BirthDate�

DegreeProg�

�

296328�

Smith�

John�

29/04/59�

Computing�

�

587614�

Smith�

Lucy�

01/05/61�

Engineering�

�

934856�

Black�

Lucy�

01/05/61�

Fine Art�

�

96S536�

Black�

Lucy�

05/03/58�

Engineering�

�

Figure 2.16 Another relation to illustrate keys

_1077278327.doc

[image: image1]

RegNum�

Surname�

FirstName�

BinhDate�

�

276545�

Smith�

Mary�

25/11/1980�

�

485745�

Black�

Anna�

23/04/1981�

�

200768�

Verdi�

Paolo�

12/02/1981�

�

587614�

Smith�

Lucy�

10/10/1980�

�

937653�

Brown�

Mavis�

01/12/1980�

�

Student�

Grade�

Course�

�

�

C�

�

�

�

B�

�

�

�

B�

�

�

�

B�

�

�

Code �

Tide�

Tutor �

�

01�

Physics�

Grant�

�

03�

Chemistry�

Beale�

�

04�

Chemistry�

Clark�

�

Figure 2.7 A database with pointers.

_1077276443.doc

RegNum�

Surname�

FirstName�

BirthDate�

�

276545�

Smith�

Mary�

NULL�

�

NULL�

Black�

Anna�

23/04/1972�

�

NULL�

Verdi�

Paolo�

12/02/1972�

�

STUDENTS

Student�

Grade�

Course�

�

274545�

C�

01�

�

NULL�

B�

NULL�

�

200768�

A�

NULL�

�

Code�

Tide�

Tutor�

�

01�

Physics�

Grant�

�

03�

Chemistry�

NULL�

�

NULL�

Chemistry�

Clark�

�

EXAMS

COURSES

Figure 2.13 A database with many null values

_1077277280.doc

Real Madrid�

Liverpool�

3�

1�

�

Liverpool�

Milan�

2�

0�

�

Real Madrid�

Roma�

1�

2�

�

Roma�

Milan�

0�

1�

�

Figure 2.3 A relation with the results of soccer matches

_1077277467.doc

VlsitingTeam�

HomeTeam�

VisitorGoals�

HomeGoals�

�

Liverpool�

Real Madrid�

1�

3�

�

Milan�

Liverpool�

0�

2�

�

Roma�

Real Madrid�

2�

1�

�

Milan�

Roma�

1�

0�

�

Figure 2.5 Another representation of the relation in Figure 2.4.

_1077277074.doc

HomeTeam�

VisitlngTeam�

HomeGoals�

VisitorGoals�

�

Real Madrid l �

Liverpool �

3�

1�

�

Liverpool�

Milan�

2�

0�

�

Real Madrid�

Roma�

1�

2�

�

Roma�

Milan�

0�

1�

�

Figure 2.4 A relation with attributes.

_1077200055.doc

ReiNum�

Surname�

FiritName�

BirthDate�

DegreeProg�

�

643976�

Smith�

John�

NULL�

Computing�

�

S876I4�

Smith�

Lucy�

01/05/61�

Engineering�

�

934856�

Black�

Lucy�

NULL�

NULL�

�

735591�

Black�

Lucy�

05/03/58�

Engineering�

�

Figure 2.18 A relation with a primary key

_1077204067.doc

Code�

Dept1�

Registration1�

Dept2�

Regristration2�

...�

�

6207�

75�

6544 XY�

93�

9775 GF�

...�

�

6974�

93�

5694 FR�

93�

9775 GF�

...�

�

Registration�

Department�

Owner�

Address�

�

7122 HT�

75�

Cordon Edouard�

Rue du Pont�

�

5694 FR�

93�

Latour Hortense�

Avenue Foch�

�

9775 GF�

93�

Le Blanc Pierre�

Rue de la Gare�

�

6544 XY�

75�

Mimault Bernard�

Avenue FDR�

�

Figure 2.22 A database that violates a referential constraint

ACCIDENTS

CARS

_1077276049.doc

RegNum�

Surname�

FirstName�

BirthDate�

�

200768�

Verdi�

Paolo�

12/02/1981�

�

9376S3�

Smith�

Lucy�

10/10/1980�

�

9376S3�

Brown�

Mavis�

01/12/1980�

�

STUDENTS

Student�

Grade�

Honours�

Course�

�

200768�

K�

�

05�

�

937653�

B�

honours�

01�

�

937653�

A�

honours�

04�

�

276545�

C�

�

01�

�

EXAMS

COURSES

Code�

Tide�

Tutor�

�

01�

Physics�

Grant�

�

03�

Chemistry�

Beale�

�

04�

Chemistry�

Clark�

�

Figure 2.14 A database with incorrect information.

_1077202652.doc

OFFENCE

Code�

Date�

Officer�

Department�

Registration�

�

987554�

26/10/92�

456�

75�

6544 XY�

�

630876�

I15/10/92�

456�

47�

6544 XY�

�

RegNum�

Surname�

FirstName�

�

567�

Brun�

Mavis�

�

638�

Lame�

Jacques�

�

OFFICERS

Regticration�

Department�

Owner�

Address�

�

7122 HT�

75�

Cordon Edouard�

Ruedu Pont�

�

5694 FR�

91�

Latour Hortense�

Avenue Foch�

�

6544 XY�

47�

Mimault Bernard�

Avenue FDR�

�

CARS

Figure 2.20 A database that violates referential constraints

_1077196675.doc

City�

GovernmentAddress�

�

Rome�

Via Quattro Novembre�

�

Florence�

NULL�

�

Tivoli�

NULL�

�

Prato�

NULL�

�

Figure 2.12 A relation with null values

