Chapter 4
SQL

[image: image1.emf]

Figure 4.18 Description of the execution of Query 17.

SQL

SQL is an acronym for Structured Query Language
. It was originally developed for the relational DBMS System R, created by the ibm Research Laboratory at San Jose in California during the late seventies. SQL has since been adopted by many other systems; it has been standardized and has become the reference language for relational databases.

SQL is not merely a query language. It contains the dual features of a Data Definition Language DDL (with commands for the definition of a relational database schema) and a Data Manipulation Language DML (with commands for the modification and querying of a database instance). In this chapter, we first introduce SQL as the definition language of a database schema (Section 4.1); then we describe the specification of queries (Section 4.2) and updates (Section 4.3). In Section 4.4 we describe some more advanced features of data definition, which require knowledge of the query language. In Section 4.5 we illustrate the commands for authorization control, and we conclude the chapter with a description of the interaction between SQL and traditional programming languages (Section 4.6).

Some advanced features of DBMSs, shown in Part III and Part IV, are also supported by SQL. We will defer the presentation of these aspects of the language until they can be introduced alongside the appropriate concepts. For this reason, we describe the SQL commands for the support of transactions and the definition of indices in Chapter 9 and the definition of active rules in Chapter 12.

Standardization of SQL The widespread use of SQL is largely due to the vast amount of standardization work that has been devoted to it, carried out mainly within ANSI (the American National Standards Institute) and ISO (the Organization for International Standardization). Many vendors of relational systems have been able to take part in the decision-making process, rather than one vendor in particular having a dominant influence. This standardization work began in the early eighties and is continuing today. Thus, various versions of the language have emerged; each one is improvement on the previous one.

The first definition of a standard for SQL was promulgated in 1986 by ANSI. This first standard already contained many of the basics for query formulation, at the same time offering some (limited) support for schema definition and manipulation. The standard was then extended in 1989; the most significant addition to this version was the definition or referential integrity. This version is known as SQL-89.

A second version, for the most part compatible with the preceding one, but containing a large number of new features, was published in 1992, known as SQL-92 or SQL-2; we will use the name SQL-2. A new version of the standard SQL-3, has recently been prepared and will also be called SQL-99. SQL-3 is completely compatible with SQL-2, but is still far from being widely adopted. For this reason, we will always refer to SQL-2 in this book, highlighting the new features that are not present in the earlier version- SQL-3 includes new capabilities resulting from recent research (among which are: active rules and triggers, recursive operations, aggregate operations, new types of data and object paradigm support). Some of these aspects are illustrated in the final part of the book dealing with advanced aspects of databases.

Even without the new SQL-3 enhancements, SQL-2 is a rich and complex language, so much so that, some years after the appearance of the definition document, no commercial system yet makes available all the language features. To quantify the precise degree of compliance with the standard, three levels of complexity of the language constructs are defined. These are known respectively as Entry sql. Intermediate SQL and Full SQL: the systems can be thus characterized according to the level that they support. Entry sql is similar to SQL-89. It differs only in a few slight corrections that were introduced during the definition of SQL-2. Intermediate SQL contains characteristics that respond best to market requirements, and is offered by many of the recent versions of relational products. Full SQL contains advanced features that are progressively being added to the systems.

On the other hand the systems frequently offer features that are not standardized. For example, active rules, or triggers, are present in several relational systems but not in SQL-2. In all these cases, the database vendors have chosen different syntaxes and have given different semantic interpretations to the same features. This is a problem for two reasons. Firstly, the need to choose, retrospectively, one from among the many solutions currently being implemented, compels the modification of systems already on the market and the rewriting of applications developed for them. Secondly, the existence of more than one proposal for the implementation of the same features is a serious obstacle to the standardization process. In fact, the definition of standards is a collective process that requires all the involved parties (vendors and sometimes representatives of users) to reach agreement.
If we look carefully at relational systems, we can see that each of them offers a different SQL; the differences emerge most dramatically when we compare their most recently developed features. Conversely, as regards the more consolidated aspects of the language, there is a strong adherence to the standard: this allows users to interact in standard SQL with systems that are completely different from each other, ranging from a single-user DBMS running on a PC, up to the DBMS on a mainframe storing the information base of a large organization.

A further important observation is that, in describing SQL we assume that the user interacts directly with the SQL engine in order to define, update and query the database. With increasing frequency, systems offer interfaces that are easy to use and contain specific programs for the definition of schemas, updates, and queries. These programs use menus and graphical interfaces to generate the corresponding SQL instructions. This, however, does not diminish the importance of knowledge of the lingua franca of database systems. This expertise is necessary for the development of all non-trivial database applications regardless of the capability of the DBMS interface.

4.1 Data definition in SQL

In this section, we illustrate the use of SQL for the definition of database schemas. Before that, we need to illustrate the notation we intend to use for the syntax of the language statements. In general we will represent the terms of the language using a typewriter-style font, while the variable terms will be written in italics. Following usual conventions, we will use some special symbols:

· angular brackets (and (are used to enclose terms;

· square brackets [and] indicate that the enclosed term is optional, that is, it may not appear or appear only once;

· curly brackets { and } indicate that the enclosed term may not appear or may be repeated an arbitrary number of times;
· vertical bars indicate that one among the terms separated by the bars must appear.

· Curved brackets (and) must always be taken as SQL keywords and not as grammar definition symbols.

4.1.1 Elementary domains

SQL provides six families of elementary domains, which can be used to define the domains associated with the attributes of the schema.

Character The domain character allows the representation of single characters or strings. The length of the strings of characters can be fixed or variable; for strings of variable length, the maximum length is indicated. A default character set is specified for each schema (e.g., Latin, Cyrillic, Greek, Kanji, etc.): when it is necessary to use more than one character set, we can specify it directly fur each domain. The syntax is:

character [varying] [(Length)][character set CharSetName]
To define a domain 'string of 20 characters' with this syntax, we can write character (20), while a domain 'string of Greek letters of variable length, maximum length 1000' would be denoted as character varying (1000) character set Greek If the length is not specified, the domain represents a single character. A varying string must specify its maximum length. SQL also allows the compact forms char and varchar, for character and varying character respectively.

Bit This domain, introduced in SQL-2, is used by attributes that can assume only the value 0 or the value 1. The domain bit is typically used to represent attributes, known as flags, which specify whether an object has or has not a certain property. SQL also allows a domain 'string of bits', for which the length is specified as a parameter. When no length is specified, the length of the string is set equal to one. The bit strings can be used for the concise representation of groups of properties. For bits, we can also define strings of variable length. The syntax is:

bit [varying] [(Length)]

To define a domain 'string of 5 bits' or 'string of bits of variable length and maximum length of 100' we can use the definitions bit(5) and bit varying(100). The latter can be shortened to varbit(100).

Exact numeric domains This family contains the domains that allow the representation of exact values, integer or with a fractional part (such as typical currency values). SQL makes available four different exact numeric domains:

· numeric [(Precision [, Scale])]

· decimal [(Precision [, Scale])]
· integer

· smallint

The domains numeric and decimal represent numbers with a decimal base. The parameter Precision specifics the number of significant digits; using a domain decimal (4) we can represent values between -9,999 and +9,999. Using the parameter Scale we can specify the scale of representation, that is, we can indicate how many digits should appear after the decimal point. If we want to include two decimal digits, we assign the value 2 to Scale. In order to specify the scale it is also necessary to specify the precision as defined above; thus with a domain numeric (6,3) we represent the values between -999.999 and +999.999. The difference between the domains numeric and decimal lies in the fact that the numeric domain has exactly the precision as indicated, while the precision of the decimal domain should be taken as a minimum requirement. Should the precision not be specified, the system uses a default implementation value. If the scale is not specified, it is assumed to be zero.

When the representation of fractions is not required, and an accurate control of the size of the decimal representation is not important, then it becomes possible to use the predefined domains integer and smallint. The degree of accuracy of these domains is not specified in the standard, but is left to the implementation.

Approximate numeric domains To represent approximate real values (useful, for example, for representing physical quantities), SQL provides the following domains:

· float [(Precision)]

· double precision

· real

All these domains allow the description of real numbers by means of a floating point representation, in which each number corresponds to a pair of values: the mantissa and the exponent. The mantissa is a fractional value, while the exponent is an integer. The approximate value of the real number is obtained by multiplying the mantissa by the power of 10 specified by the exponent. For example, the notation 0.17E16 represents the value 1.7 x1015 and 0.4E-6 represents 4X107. A given precision can be specified for the domain float, which represents the number of digits dedicated to the representation of the mantissa, while the precision of the exponent depends on the implementation. The domain double precision represents the numbers with a greater precision than the domain real.

Date and time This family of domains and the next were introduced in SQL-2 in order to offer specific support to the management of temporal information, which is very important in many applications. They represent instants of time and comprise three forms:

· date

· time [(Precision)][with time zone]
· timestamp[(Precision)] [with time zone]

Each of these domains can be structured in fields. The domain date allows the fields year, month and day, the domain time allows the fields hour, minute and second, and timestamp allows all the fields, from year to second. For both time and timestamp we can specify the precision, which represents the number of decimal places that must be used in the representation of fractions of a second. If the precision is not specified, time assumes a precision of zero (resolution to the second) and timestamp of 6 (temporal resolution to the microsecond). If the option with time zone is specified, then it becomes possible to access two fields, timezone_hour and timezone_minute. They represent the difference between local time and Universal Coordinated Time formerly known as Greenwich Mean Time; thus 21:03:04+1:00 and 20:03:04+0:00 correspond to the same instant in time, but the first represents it in Middle European Time (differing from the base time zone by +1:00), the second in Universal Coordinated Time.

Temporal intervals This family of domains allows the representation of intervals of time, such as, for example, the duration of an action. The syntax is:

interval FirstUnitOfTime [to LastUnilOfTime]
FirstUnitOfTime and LastUnitOfTime define the units of measurement that must be used, from the greatest to the smallest. We can therefore define domains such as interval year to month to indicate that the length of the time interval must be measured by the number of years and the number of months. It has to be noted that the group of units of measurement is divided into two distinct groups: year and month on one hand, and the units from day to second on the other; this separation occurs because it is impossible to compare days and months exactly (given that a month can have between 28 and 31 days), making it infeasible to compare intervals of the two groups. The first unit that appears in the definition, whatever it may be, can be characterized by the precision, which represents the number of decimal digits used in the representation. When the smallest unit is the second, we can specify a precision that represents the number of decimal places to be used. If the second is the first (and therefore the only) unit, then the first parameter represents the number of significant decimal places and the second parameter would represent the number of decimal places of the fractional part. When the precision is not specified, it assumes the default value 2. Thus, interval year(5) to month allows the representation of intervals up to 99,999 years and 11 months, while interval day(4) to second(6) allows the representation of intervals up to 9,999 days, 23 hours 59 minutes and 59.999999 seconds, with a precision to a millionth of a second.
4.1.2 Schema definition

SQL makes it possible to define a database schema as a collection of objects; each schema consists of a set of domains, tables
 indices, assertions, news and privileges, defined by the following syntax:

create schema [SchemaName] [[authorisation] Authorization]
{ SchemaElementDefinilion }

Authorization represents the name of the user who owns the schema. If the term is omitted, it is assumed that the user who issued the command is the owner. The name of the schema can be omitted and, in this case, the name of the owner is adopted as the name of the schema. After the create schema command, the user can define the schema components. It is not necessary for all the components to be defined at the same time as the schema is created: this can take place in several successive phases. Let us now look at tables and domains, postponing the other elements of the schema (assertions, views and privileges) until Section 4 .4.
4.1.3 Table definition

An SQL table consists of an ordered set of attributes and of a (possibly empty) set of constraints. For example, the schema of a table DEPARTMENT is defined by means of the following SQL statement:

create table Department
(
Name char (20) primary key,
Address char(80),
City char(20)
)

The above table has three attributes of character string domain; the attribute Name constitutes the primary key of the table. The syntax fur the definition of a table is:

create table TableName {AttnbuteName Domain [DefaultValue] [Constraints]
{, AttributeName Domain [DefaultValue] [Constraints]}
[OtherConstraints])

Each table is defined by giving its name and the definition of its attributes; each attribute, in turn, has a name and domain and possibly a set of constraints, which must be satisfied by the attribute values. Once all the attributes have been defined, we can then define the constraints that involve more than one attribute of the table. A table is initially empty and the creator holds all the privileges regarding the table, that is, the rights to access and to modify the data.

4.1.4 User defined domains

In the definition of tables, beside the predefined domains we have illustrated in Section 4.1.1, it is possible to refer to domains that are explicitly defined by the user. Note that there is a close relationship between the definition of the domains of attributes and the definition of the types of variables in a high-level programming language (C, Pascal, etc.). In both cases the goal is the definition of the legal values for data However, there are also important differences. On the one hand, the type constructors in SQL are much more limited than those in programming languages. On the other hand, however, SQL offers domain constraints, which have no counterpart in such languages. In SQL, new domains are specified using the predefined domains described in Section 4. 1. 1 by means of the create domain command.

create domain DomainName as ElementaryDomain [DefaultValue] [Constraints]

A domain is thus characterized by its own name, by an elementary domain (which can be predefined or previously user-defined), by a possible default value, and finally by a (possibly empty) set of constraints that represent the conditions that must be satisfied by legal domain values.

Unlike the type definition mechanisms of the various programming languages, SQL-2 does not provide domain constructors such as record or array (other than the possibility of defining strings of characters or bits). This constraint derives from the relational data model, which requires that all attributes have elementary domains.

The declaration of domains associates a domain name with a set of constraints. This becomes important when, for example, we need to repeat the same attribute definition in several tables. The definition of a domain enables its reuse and makes attribute definitions more easily modifiable. We can change just the domain definition (particularly the default and the constraints associated with it) and such a change is propagated to all the tables where it is used.

4.1.5 Default domain values

In the syntax for defining domains and tables, we note the presence of a term DefaultValue, associated with domains and attributes. This term specifies the value that the attribute must assume when a row is inserted into the table without a value being specified for the attribute itself. When a default value is not specified, the value null is assumed as default. The syntax for the specification of default values is:

default (GenericValue | user | null(
GenericValue represents a value that is compatible with the domain, provided as a constant or, more generally, defined as the result of the evaluation of an expression. The option user sets as default value the login name of the user who issues the command to update the table. When an attribute has a domain with a default value and is explicitly given a different default value, the default value associated with the attribute wins and becomes the effective default value.

For example, an attribute NumberOfChildren, which allows an integer as a value and which has the default value zero, is defined by:

NumberOfChildren smallint default 0

If, during the insertion of a row, the value of the attribute is not specified, it is assigned the value zero.

4.1.6 Intra-relational constraints

In the definition of both domains and tables, we can define constraints, that is, properties that must be verified by every instance of the database. We introduced constraints in Section 2.2, making the distinction between intra-relational constraints (which involve a single relation) and inter-relational constraints (which lake into account several relations). The most powerful construct for the specification of generic constraints, both inter-relational and intra-relational, is that of check, which, however, requires the specification of queries to the database. We deal with this later, in Section 4.4, once we have illustrated SQL queries. In this section, we will illustrate predefined intra-relational constraints.

The simplest intra-relational constraints are not null, unique, and primary key.
Not null The null value is a special value, which indicates the absence of information. A null value can generally represent different situations as we discussed in Section 2.1.5.

However, SQL-2 does not allow the distinction among the various interpretations of the null value. Those applications that need to be able to distinguish among these various situations must resort to ad-hoc solutions, such as the introduction of other attributes.

The constraint not null indicates that the null value is not admissible as the attribute value. In this case, the attribute must always be specified, generally at the insertion stage. If, however, a default value other than null is associated with the attribute, then it becomes possible to carry out an insertion even without providing a value for the attribute since the default value will be assigned to it automatically.

The constraint is specified by adding to the attribute definition the keywords not null:

Surname character(20) not null

Unique A unique constraint is applied to an attribute (or a set of attributes) of a table and imposes the requirement that the attribute (or the set of attributes) is a (super)key. Thus, the constraint ensures that different rows do not possess the same values. An exception is made for the null value, which can appear in various rows without violating the constraint, since it is assumed that each null value represents an unknown actual value different from that of another null value.

This constraint can be defined in two ways. The first alternative can be used only when the constraint involves a single attribute. In this case, the specification of the attribute is followed by the keyword unique (similar to the specification of the not null constraint):

RegistrationNumber character(6) unique

The second alternative is necessary when we need to define the constraint on a set of attributes. In this case, after the definition of the attributes, we use the following clause:

unique (Auribute{, Attribute})
The following is an example of the use of this syntax:

FirstName character(20) not null,
Surname character(20) not null,
unique (Surname, FirstName)

It should be noted that the above definition is very different from a definition such as the following:

FirstName character (20) not null unique,
Surname character(20) not null unique

In the first case, the constraint imposes the condition that there can be no two rows that have both the same first name and the same surname. In the second (stricter) case, the constraint is violated if either the same first name or the same surname appears more that once.

Primary key As we discussed in Section 2.2, it is usually important to specify a primary key, the most important identifier for a relation. Accordingly, SQL allows a primary key constraint to be specified only once for each table (while it is possible to use the constraints unique and not null an arbitrary number of times). Like the unique constraint, the primary key constraint can be directly defined on a single attribute, or it can be defined by listing the several attributes that make up the primary key. None of the attributes of a primary key can assume the null value; thus, the definition of primary key implies an implicit definition not null for all the attributes of the primary key.

For example, the following definition imposes the constraint that the pair of attributes FirstName and Surname constitute the primary key

FirstName character (20),
Surname character(20),
Dept character (15),
Salary numeric(9) default 0,
primary key (Surname, FirstName)

4.1.7 Inter-relational constraints

As we saw in Section 2.2, the most important inter-relational constraints are referential integrity constraints. In SQL, the appropriate construct to define them is the foreign key constraint.

This constraint creates a link between the values of the attribute(s) of a table and the values of the attribute(s) of another table. With respect to such a constraint, we call the involved tables internal and external. The constraint is that for every row of the internal table the value of a given attribute, if different from the null value, must be present among the values of a given attribute of the rows belonging to the external table. The only requirement that the syntax imposes is that the attribute referred to in the external table is subject to a unique constraint, that is, identifies the tuples of the external table. This attribute generally represents the primary key of the table, for which the unique constraint is guaranteed. Several attributes may be involved in the constraint, when the key for the external table consists of a set of attributes. In this case, the only difference is that it is necessary to compare tuples of values rather than single values.

The constraint can be defined in two ways, like the unique and primary key constraints. If there is only one attribute involved, it is possible to define it using the syntactic construct references, which indicates the external table and attribute. The more general definition, which is necessary when the link is represented by a set of attributes, uses the construct foreign key, syntactically placed after attribute definitions. This construct lists firstly the constrained attributes of the internal table involved in the link, followed by the name of the external table and the names of the referenced attributes. Let us give an example of the first use:

create table Employee (
RegNo character(6) primary key,
FirstName character (20) not null,
Surname character(20) not null,
Dept character(15)
 references Department(DeptName),
Salary numeric(9) default 0,
City character(15),
unique (Surname, FirstName)
)

The constraint specifies that the attribute Dept can assume only one of the values that the rows of the table department possess for the attribute DeptName.

If we then need the attributes FirstName and Surname to appear in a table of personal records, we need to use the second alternative:

create table Employee (
RegNo character(6) primary key,
FirstName character(20) not null,
Surname character (20) not null,
Dept character(15)
 references Department(DeptName),
Salary numeric(9) default 0,
City character(15),
unique (Surname. FirstName),
foreign key(FirstName, Surname)references PersonalRecord(FirstName, Surname)

The correspondence between the local and external attributes reflects their order: the first attribute in the foreign key corresponds to the first attribute in the referenced table, and so on for the other attributes. In this case, FirstName and Surname of EMPLOYEE correspond respectively to FirstName and Surname of PERSONALRECORD.
In the case of all the constraints seen so far, when the system detects a violation generated by an update, the system just rejects the update, signaling the error to the user. With referential integrity constraints, SQL also allows the user to choose other actions to be taken when a violation is introduced.

We illustrate the point by means of an example. Consider the definition of the foreign key constraint on the attribute Dept in the table EMPLOYEE. The constraint can be violated by operating either on the rows of the internal table, EMPLOYEE, or on those of the external table, DEPARTMENT. There are only two ways to introduce violations by modifying the contents of the internal table: by inserting a new row or by changing the value of the referring attribute. No particular support is offered in the case of either of these violations; the operation will simply be rejected.

On the other hand, various options are offered for responding to violations generated by alterations to the external table. The reason for this asymmetry is due to the particular importance of the external table, which, from the application point of view, typically represents the principal table (or master). The internal table (or slave) must adapt itself to variations in the master. In fact, all actions will generate an intervention only on the internal table.

The operations on the external table that can produce violations are the update of values of the referenced attributes and the deletion of rows (in the example, deletion of rows in DEPARTMENT and update of the attribute DeptName). The type of reaction can differ according to the command that produced the violations.

In particular, for updates, it is possible to react in one of the following ways:

· cascade: the new value of the attribute of the external table is assigned to all the matching rows of the internal table;

· set null: the value null is assigned to the referring attribute in the internal table in place of the value modified in the external table;

· set default: the default value is assigned to the referring attribute in the internal table in place of the value modified in the external table;

· no action: the update is simply rejected, with no correcting action by the system.

For violations produced by the deletion of an element of the external table, the same set of reactions is available:

· cascade all the rows of the internal table corresponding to the deleted row are also deleted;

· set null: the value null is assigned to the referring attribute in place of the value deleted from the external table;

· set default: the default value is assigned to the referring attribute in place of the value deleted from the external table;

· no action the deletion is rejected.
We can specify different policies for different events (for example, using a cascade policy for updates and a set null policy for deletions). The use of the cascade policy assumes that the rows of the internal table are tightly linked to the corresponding rows of the external table. Therefore, if modifications are made to the external table, the same modifications must be made to all the rows of the internal table. On the other hand, the other policies assume a weaker dependence between the rows of the two tables,

The reaction policy is specified immediately after the integrity constraint, according to the following syntax:

on (delete | update(
(cascade | set null | set default | no action(
The following example shows a referential integrity constraint whose repair policies are set null for deletions and cascade for updates:

create table Employee (
RegNo character(6),
FirstName character(20) not null,
Surname character (20) not null,
Dept character(15),
Salary numeric(9) default 0,
City character(15).
primary key(RegNo),
foreign key(Dept) references Department(DeptName) on delete set null
 on update cascade,
unique (Surname,FirstName)
)
4.1.8 Schema updates

SQL provides primitives for the manipulation of database schemas, which enable the modification of previously introduced table definitions. The commands used for this purpose are alter and drop.

The alter command The alter command allows the modification of domains and schemas of tables. The command can assume various forms:

alter domain DomainName
 (set default Default Value | drop default |
 add constraint ConslraintDef | drop constraint ConstraintName)
alter table TableName (alter column AtlributeName (set default Default Value | drop default)
 | add constraint Constraint Def | drop constraint Constraint
 | add column AttributeDef I drop column AtlributeName (
By using alter domain and alter table we can add and remove constraints and modify default values associated with domains and attributes; furthermore, we can add and remove attributes and constraints within the schema of a table. Note that when a new constraint is defined, it must be satisfied by the data already present in the database. If the database contains violations of the new constraint, the constraint definition will be rejected.

For example, the following command extends the schema of the table DEPARTMENT with an attribute NoOfOffices that makes it possible to represent the number of offices within the department:

alter table Department add column NoOfOffices numeric(4)

The drop command While the alter command carries out modifications to the domains or schemas of the tables, the drop command allows the removal of components, whether they be schemas, domains, views or assertions. Assertions are constraints that are not associated with any particular table; these will be presented in Section 4.4. The command has the syntax:
drop (schema | domain | table | view | assertion(ComponentName [restrict | cascade]

The restrict option specifies that the command must not be carried out if the component being deleted is not empty. Thus, a schema is not removed if it contains tables or other elements; a domain is not removed if it appears in a table definition; a table is not removed if it possesses rows or if it is present in a definition of a table or view; and, finally, a view is not removed if it is used in the definition of other views. The restrict option is the default.
With the cascade option, the component is removed together with the components depending on it. Thus, when a non-empty schema is removed, all the objects of which it is constructed are also eliminated. By removing a domain that appears in the definition of an attribute, the cascade option causes the name of the domain to be removed, but the attributes that were defined using that domain remain associated with the same basic domain definition. Consider, for example, the domain LongString, defined as char(100). If LongString is eliminated (by means of the command drop domain LongString cascade) all the attributes defined on that domain will directly assume the domain char(100). When a table is removed with the cascade option, all its rows are lost. If the table appeared in another definition of a table or view, these would also be removed. By eliminating a view that appears in other tables or views, these are removed too.

The cascade option usually generates a chain reaction. All the elements depending on an element that is eliminated are eliminated in their turn until there are no remaining elements that contain, in their definitions, elements that have been eliminated. It is necessary to exercise extreme caution in the use of this option, since it is possible that, owing to some overlooked dependence, the command could have a different result from the one intended. Many systems make it possible to test the result of the drop cascade command, before it is actually executed.

4.1.9 Relational catalogues

Although only partly specified by the standard, each relational DBMS manages its own data dictionary (or rather the description of the tables present in the database) using a relational schema. The database therefore contains two types of table: those that contain the data and those that contain the metadata. This second group of tables constitutes the catalogue of the database.

This characteristic of relational system implementations is known as reflexivity. A DBMS typically manages the catalogue by using structures similar to those in which the database instance is stored. Thus, an object-oriented database, for example, will have a data dictionary that is defined on an object model (see Chapter 11). In this way, the database can use the same functions for the internal organization of metadata as are used for the management of the database instance.

The definition and modification commands of the database schema could, in theory, be replaced by manipulation commands that operate directly on the tables of the data dictionary, making superfluous the introduction of special commands for the definition of the schema. This is not done, however, for two reasons. The first is the absence of a standardization of the dictionary, which differs greatly from one product to the next. The second is the necessity of ensuring that the commands for the manipulation of schemas are clear and immediately recognizable, and furthermore syntactically distinguishable from the commands that modify the database instance.

The SQL-2 standard for the data dictionary is based on a two tier description. The first level is that of DEFINITON_SCHEMA, made up of a collection of tables that contain the descriptions of all the structures in the database. The collection of tables appearing in the standard, however, is not used by any implementation, since the tables provide a description of only those aspects of a database covered by SQL-2. What is left out, in particular, is all the information concerning the storage structures, which, even if not present in the standard, form a fundamental part of a schema. The tables of the standard, therefore, form a template to which the systems are advised (but not obliged) to conform. The second component of the standard is the INFORMATION_SCHEMA. This consists of a collection of views on the DEFINITION_SCHEMA. These views fully constitute part of the standard and form an interface for the data dictionary which must be offered by the systems that want to be compatible with the standard. The INFORMATION_SCHEMA contains views such as DOMAINS, DOMAIN_CONSTRAINTS. TABLES. VIEWS. COLUMNS, up to a total of 23 views that describe the structure of the database.

[image: image2.png]

[image: image3.emf]

Figure 4.18 Description of the execution of Query 17.

Rather than describe the structure of these tables, we provide a simplified example of the contents of one of these views. In Figure 4.1 we can see the simplified contents of the COLUMNS view of the catalogue describing the tables EMPLOYEE and DEPARTMENT.
In Figure 4.2 we see an example of the reflexivity of the data dictionary, with the description in COLUMNS of the view itself.

4.2 SQL queries

The part of SQL dedicated to the expression of queries is included in the DML. However, the separation between the DDL and the DML is not rigid and part of the query definition syntax will also be used in the specification of certain advanced features of the schema (see Section 4.4).

4.2.1 The declarative nature of SQL

SQL expresses queries mainly in a declarative way, that is, by specifying the properties of retrieved data and not how to obtain it. In this respect, SQL follows the principles of relational calculus and contrasts with procedural query languages, such as relational algebra. In which a data retrieval procedure has to be specified in the query. The SQL query is passed for execution to the query optimizer. This is a DBMS component, which analyzes the query, selects a query execution strategy and formulates an equivalent query in the internal procedural language of the database management system. This procedural language is hidden from the user. In this way, whoever writes queries in SQL can ignore the translation and optimization aspects. The query optimizer will be discussed in Section 9.6. The enormous effort that has gone into the development of optimization techniques has made highly efficient query execution possible for most relational DBMSs.

There are generally many different ways to express a query in SQL: the programmer must make choices that are based not on efficiency but rather on characteristics such as readability and ease of modification of the query. In this way, SQL facilitates the programmers work, making possible the description of abstract and high level queries.

4.2.2 Simple queries

Query operations in SQL are specified by means of the select statement. Let us first look at the essential structure of a select:

select TargetList
from TableList
[where Condition]

The three parts that make up a select instruction are often called respectively the target list, the from clause, and the where clause. A more detailed description of the same syntax is as follows:

select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias]}
from Table [[as] Alias] {, Table [[as] Alias}]
[where Condition]

An SQL query considers the rows that belong to the cartesian product of the tables listed in the from clause, and selects those that satisfy the conditions expressed in the where clause. The result of the execution of an SQL query is a table, with a row for every row selected by the where clause, whose columns result from the evaluation of the expressions AttrExpr that appear in the target list. Each column can be re-named by means of the Alias that appears immediately after the expression. The tables can also be re​named using the Alias: the table alias is used either as a shorthand or as a variable, in a way that we will go into later.

Consider a database containing the tables EMPLOYEE(FirstName, Surname, Dept, Office, Salary, Ciiy) and DEPARTMENT(DeptName, Address. City).

Query 1: Find the salary of the employees named Brown.

select Salary as Remunaration
from Employee
where Surname = 'Brown'

If there are no employees named Brown, the query returns an empty result. Otherwise, it returns a table with as many rows as there are employees with that surname. By applying the query to the table in Figure 4.3, we obtain the result shown in Figure 4.4: there are two employees named Brown and therefore the result contains two rows.

Let us now continue the analysis of SQL queries, gradually introducing more complex constructs.

Target list The target list specifies the elements of the schema of the resulting tables. The special character * (asterisk) can also appear in the target list, representing the selection of all the attributes of the tables listed in the from clause.

Query 2: Find all the information relating to employees named Brown. The result appears in Figure 4,5

select *
from Employee
where Surname = 'Brown'

The target list can contain generic expressions on the values of the attributes of each selected row.

Query 3: Find the monthly salary of the employees named White. The result is shown in Figure 4.6.

select Salary / 12 as MonthlySalary
from Employee
where Surname = 'White'

From clause When we need to formulate a query that involves rows belonging to more than one table, the argument of the from clause is given as a list of tables. The conditions in the where clause are applied to the cartesian product of these tables; a join can be specified by explicitly indicating comparisons between attributes of different tables.

Query 4: Find the names of the employees and the cities in which they work.

select Employee.FirstName, Employee.Surname, Department.City
from Employee, Department
where Employee.Dept = Department.DeptName

Taking the contents of EMPLOYEE and DEPARTMENT respectively from Figure 4.3 and Figure 4.7 the result of the evaluation of Query 4 is the table shown in Figure 4.8

In the above query we note the use of the dot operator to identify the tables from which attributes are extracted. For example, Employee.Dept denotes the Dept attribute of the table EMPLOYEE. This use is common in many programming languages, to identify the fields of a structured variable. It is necessary to use this notation when the tables listed in the from clause have attributes with the same name, in order to distinguish among the references to the homonym attributes. When there is no danger of ambiguity, because the attribute name appears in only one of the tables, we can specify the attribute without declaring the table to which it belongs.

Query 5: The only homonym attribute in the tables EMPLOYEE and DEPARTMENT is the attribute City. The preceding query can therefore be expressed as follows, by using an alias for table DEPARTMENT with the intention of abbreviating the reference to it:

select FirstName, Surname, D.City
from Employee, Department as D
where Dept =DeptName

Where clause The condition in the where clause is a boolean expression constructed by combining simple predicates with the operators and, or and not Each simple predicate uses the operators =, <>, <, >, <= and >= to build a comparison that has on one side an expression formed from the values of the attributes of the row and, on the other side, a constant value or another expression. The syntax gives precedence to the operator not in the evaluation, but does not introduce a precedence between the operators and and or. If we need to express a query that requires the use of both and and or, then we have to indicate the order of evaluation by using brackets.

Query 6: Find the first names and surnames of the employees who work in office number 20 of the Administration department.

select FirstName, Surname
from Employee
where Office = '20' and Dept = 'Administration'

The result in Figure 4.9 is obtained from the database in Figure 4.3.

Query 7: Find the first names and surnames of the employees who work in either the Administration department or the Production department.

select FirstName, Surname
from Employee
where Dept = 'Administration' or Dept = 'Production'

By applying the query to the table in Figure 4.3, we obtain the result in Figure 4.10.

Query 8: Find the first names of the employees named 'Brown' who work in the Administration department or the Production department. The result is shown in Figure 4.11.

select FirstName
from Employee
where Surname='Brown' and
 (Dept = 'Administration' or Dept = 'Production')

As well as the usual predicates for relational comparisons, SQL provides an operator like for the comparison of strings. This operator performs pattern matching with partially specified strings, obtained by using the special characters _ (underscore) and % (percentage). The underscore represents an arbitrary character in the comparison, while the percent sign represents a string (possibly empty) of arbitrary characters. The comparison like 'ab%ba_' will thus be satisfied by any string of characters beginning with ab and having the pair of characters ba before the final position (for example, abcdedcbac or abbaf).

Query 9: Find the employees with surnames that have 'r' as the second letter and end in 'n' The result is shown in Figure 4.12

select *
from Employee
where Surname like '_r%n'

Management of null values As we saw in Section 2.1.5, a null value in an attribute can mean that a certain attribute is not applicable or that the value is applicable but unknown, or even that we do not know which of the two situations applies,

For the selection of terms with null values, SQL supplies the is null predicate, the syntax of which is simply:

Attribute is [not] null

The predicate is null gives a true result only if the attribute has the value NULL. The is not null predicate produces the opposite result.

Null values have a particular impact on the evaluation of normal predicates. Consider a simple predicate for the comparison of the value of an attribute with a constant value:

Salary > 40
This predicate will be true for the rows in which the salary attribute is greater than 40. Bearing in mind what we said in Section 3.1.8, note that there are two different solutions for dealing with the situation in which the Salary attribute has the null value. The first solution, which was adopted by SQL-89, uses traditional two-valued logic and simply allows the predicate to be considered false. The second solution, on the other hand, is the one adopted by SQL-2. This uses a three-valued logic, in which a predicate returns the unknown value when any of the terms of the predicate has a null value. Note that the is null predicate is an exception, since it always returns either of the values true or false, never the unknown value.

The difference between the solutions based on two- or three-valued logic emerges only when complex expressions are evaluated. In some cases, the behaviour of the system when null values are present can be far from intuitive, particularly when complex predicates are constructed using negation or nested queries (introduced in Section 4.2.6).

Algebraic interpretation of SQL queries We can construct a correspond​ence between SQL queries and the equivalent queries expressed in relational algebra. Given a query in SQL in its simplest form:

select T1.Attribute11,, Th.Attibutehm
from Table1 T 1, ..., Tablen Tn
where Condition

we can use the following translation, where preliminary renamings (omitted here for simplicity) are applied to each TABLE, so that joins are indeed cartesian products:

(T1.Attribute11,…,Th.Attributehm((Condition(TABLE1 ((... ((TABLEn))

For more complex SQL queries, the conversion formula shown above is no longer directly applicable. We could, however, demonstrate a technique for translating an sql query into an equivalent query in relational algebra.

The link between SQL and tuple calculus with range declarations is even stronger (Section 3.2.3)

Assuming that the aliases T1 T2, ..., Th appear in the target list and that Th+1,.Th+2 ,...,Tn do not,3 the generic statement select has a meaning that is equal to that of the following expressions of tuple calculus with range declarations:
{ t1.Attribute11,, th.Attibutehm |
t1 (table1) ,, th TABLEh)

|(th+1(TABLEh+1). (....((tn(TABLEn)(Condition’))...))
where Condition’ is the formula obtained from Condition, substituting the relational calculus notation into the SQL one. Note how each variable in calculus corresponds to a table alias. We will see that some uses of aliases in sql make this similarity even more apparent.

It should be noted that these correspondences between SQL and the other languages do not hold any more if we consider some advanced features of SQL, such as the evaluation of aggregated operators (Section 4.2 3). Results of SQL queries and of algebraic or calculus expressions differ on duplicate tuples, as discussed below.

Duplicates A significant difference between SQL and relational algebra and calculus is the management of duplicates. In algebra and calculus, a table is seen as a relation from the mathematical point of view, and thus as a set of elements (tuples) different from each other. In SQL a table can have many rows with the same values for all their attributes. These are known as duplicates.
For emulating the behavior of relational algebra in SQL, it would be necessary to eliminate all the duplicates each time a projection operation is executed. However, the removal of duplicates is time consuming and often unnecessary, in that frequently the result contains no duplicates. For example, when the result includes a key for every table that appears in the from clause, the resulting table cannot contain identical rows. For this reason it was decided to allow the presence of duplicates in SQL, leaving it to the person writing the query to specify when the removal of duplicates is necessary.
The elimination of duplicates is specified by the keyword distinct, placed immediately after the keyword select. The syntax also allows for the specification of the keyword all in place of distinct, indicating the requirement that the duplicates should be retained. The use of the word all is optional, in that the conservation of duplicates constitutes the default option.

Given the table PERSON (TaxCode, FirstName, Surname, City) (Figure 4.13), we wish to retrieve the cities in which the people named Brown live; we will show two examples, the first of which allows the presence of duplicates while the second uses the distinct option and therefore removes them

Query 10: Find the cities of people named Brown:

select City
 from Person
where Surname = 'Brown'

Query 11: Find the cities of people named Brown, with each city appearing only once:

select distinct City
from Person
where Surname = 'Brown'

By executing the two queries shown above on the table in Figure 4.13, we obtain the results shown in Figure 4.14.

Inner and outer joins An alternative syntax introduced in SQL-2 for the specification of joins makes it possible to distinguish between the conditions that represent join conditions and those that represent selections of rows. In this way we can also specify outer joins and other extensions.
The proposed syntax is as follows:

select AtlrExpr [[as] Alias] {, AttrExpr[[as] Alias]}
from Table [[as] Alias]
 {[JoinType] join Table [[as] Alias] on JoinConditoon}
 [where OtherCondition]

Using this syntax, the Join condition docs not appear as the argument of the where clause, but instead is moved into the from clause, associated with the tables that are involved in the join.

The parameter JoinType specifies which type of join to use. and for this we can substitute the terms inner, right outer, left outer, or full outer (the term outer is optional). The inner join is the traditional theta-join of relational algebra.

Query 12: Query 5 can be rewritten using the syntax of the inner join in the following way:

select FirstName , Surname D.City
from Employee inner join Department as D on Dept = DeptName

With the inner join between the two tables, the rows involved in the join are generally a subset of the rows of each table. It can happen that some rows are not included because there exists no corresponding row in the other table for which the condition is satisfied. This property often conflicts with the demands of applications that might need to retain the rows that would be eliminated by the join. In writing (the application. we might prefer to use null values to represent the absence of information in the other table. As we have seen in Section 3.1.5, the outer join has precisely the task of executing a join while maintaining all the rows that appear in one or both the tables involved.

There are three different types of outer join: left, right and full. The left join gives the same result as the inner join, but includes the rows of the table that appears in the left of the join for which no corresponding rows exist in the right-hand table The right join behaves symmetrically (keeps the rows of the right-hand table); finally, the full join gives the result of the inner join along with the rows excluded from both tables.

Consider the tables driver and AUTOMOBILE shown in Figure 4.15.

Query 13: Find the drivers with their cars, including the drivers without cars.

select FirstName, Surname, Driver. Driver ID, CarRegNo, Make, Model
from Driver left join Autombile on
 (Driver.DriverID = Automobile.DriverID)

The result is shown in Figure 4.16. Note the last row that shows a driver for whom there is no automobile

Query 14: Find all the drivers and all the cars, showing the possible relationship between them:

select FirstName, Surname, Driver.DriverID, CarRegNo, Make. Model from Driver
full join Automobile on
 (Driver.DriverID = Automobile.DriverID)

The query produces the table shown in Figure 4.17. Note the last row of the table, describing an automobile for which there is no corresponding element in DRIVER

Some implementations of SQL specify the outer join in a non-standard way by adding a particular character or sequence of characters (for example * or (+)) to the attributes involved in the join condition. In this way we can formulate the outer join without using the syntax above. For example, Query 13 could be formulated in the following way:

Query 15:

select FirstName, Surname, Driver. DriverID, CarRegNo, Make, Model
from Driver, Automobile
where driver.DriverID* = Automobile.DriverID

These solutions, being outside the SQL-2 standard, are not portable from one system to another.

A further feature of SQL-2 is the possibility of using the keyword natural before the join type. This makes it possible to define the natural join of relational algebra. Therefore, in the joining of two tables, we can use an implicit condition of equality on all the attributes having the same name (see Section 3.1.5). For example Query 14 could be written as:

Query 16:

select FirstName, Surname. Driver. Driver ID, CarRegNo, Make, Model
from Driver natural full join Automobile

In spite of the advantage of an increased compactness, the natural join is not normally available on commercial systems. One reason is that a query that uses a natural join can introduce risks to the applications, because its behaviour can change significantly as a result of small variations on the schema. Another reason is that the natural join makes it necessary to analyze completely the schema of the tables involved in order to understand the join condition. This is a disadvantage when writing and when reading the query, because in both situations it is necessary to do a careful comparison of the schemas of the joined tables in order to be sure of the behaviour of the query.

Use of variables. We have already seen how we can associate alternative names, called aliases, with the tables that appear in the from clause. The name is used to refer to the table in the context of the query. This feature can be used to avoid the necessity for writing out the full name of the table each time it is requested, as seen already in Query 5, and for other reasons.

In the first place, by using aliases we can refer more than once to the same table, in a way similar to the use of the renaming operator (of relational algebra. Each time an alias is introduced, we declare a variable of type table, which possesses as a value the contents of the table for which it is an alias. When a table appears only once in a query, there is no difference between interpreting the alias as a pseudonym or as a new variable. When a table appears more than once, however, it is essential to see aliases as new variables.

Query 17: Find all the employees who have the same surname (but different first names) of an employee belonging to the Production department.

select E1.FirstName, E1.Surname
from Employee E1,Employee E2
where E1.Surname = E2.Surname and
 E1.FirstName <> E2.FirstName and
 E2.Dept = 'Production'

This query compares each row of EMPLOYEE with all the rows of EMPLOYEE associated with the Production department. Note that in this query, each row whose Dept attribute has the value Production is also compared with itself, but the comparison of the row with itself will never be satisfied, in that the predicate of inequality on the attribute FirstName can never be true

To illustrate the execution of this query, we can imagine that when we define the aliases, two different tables E1 and E2 are created, each containing all the rows of employee. Figure 4.18 shows the idea and the fact that there is a comparison of each row of E1 with each row of E2.

The definition of aliases is also important fur the specification of nested queries, as we will see in Section 4.2.6.

To demonstrate the correspondence between the renaming operator of relational algebra and the use of variables in SQL, we can use SQL to formulate the query shown in Section 3.1.6 (Expression 3.3). Suppose the table SUPERVISION(Head. Employee) describes the relationship between employees and supervisors.

Query 18: Find the names and salaries of the supervisors of the employees who earn more than 40 thousand.

select E1.Name as NameH, E1.Salary as SalaryH
from Employee El, Supervision, Employee E2
where E1.Number = Supervision.head and
E2.Number = Supervision.Employee and
E2.Salary > 40
Ordering. Whereas a relation is made up of a non-ordered set of tuples, applications often require an ordering of the rows. Consider the case in which the user wants to know which are the highest salaries paid by the company. This needs a query that returns the employees' data ordered on the value of the Salary attribute.

SQL makes it possible to impose an order on the rows of the result of a query by means of the order by clause, with which the query is ended. The clause obeys the following syntax.

order by OrderingAttribute [asc | desc] {, OrderingAttribute [asc | desc]}

In this way, the query specifies the attributes that must be used for the ordering. The rows are ordered according to the first attribute in the list. For rows that have the same value for this attribute, the values of the attributes that follow are taken into account, in sequence. The order on each attribute can be ascending or descending, and it is specified by means of the qualifiers asc or desc. If the qualifier is omitted, the ascending order is assumed.

Consider the database in Figure 4.15.

Query 19: Extract the content of the AUTOMOBILE table in descending order of make and model.

select *
from Automobile
order by Make desc, Model desc

The result is shown in Figure 4.19

4.2.3 Aggregate queries
Aggregate operators constitute one of the most important extensions of SQL in comparison with relational algebra.

In relational algebra, all the conditions are evaluated one tuple at a time: the condition is always a predicate that is evaluated on each tuple independently of all the others.

Often, however, it is necessary to evaluate properties that are dependent on sets of tuples. Suppose that we wish to find the number of employees in the Production department. The number of employees will correspond to the number of tuples in the relation EMPLOYEE having Production as the value of the attribute Dept. This number, however, is not a property possessed by one tuple in particular, and therefore the query is not expressible in relational algebra. In order to express it in SQL we use the aggregate operator count.

Query 20 Find the number of employees In the Production department:

select count(*)
from Employee
where Dept = 'Production'
The query is first executed in the normal manner, taking into account only the from and where clauses. The aggregate operator is then applied to the table containing the result of the query. In the example above, firstly a table is constructed containing all the rows of EMPLOYEE having Production as the value of the attribute Dept. Then, the aggregate operator is applied to the table, counting the number of rows that appear in it.

Standard SQL provides five aggregate operators; they are count, sum max, min and avg. The count operator uses the following syntax:

count ((* [distinct | all] AttnbuteList()
The first option (*) returns the number of rows. The distinct option returns the number of different values for the attributes in AttributeList. The all option returns the number of rows that possess values different from the null value for the attributes in AttributeList. If an attribute is specified without distinct or all, all is assumed as default.
Query 21: Find the number of different values on the attribute Salary for all the rows in EMPLOYEE:

select count(distinct Salary) from Employee

Query 22: Find the number of rows of EMPLOYEE having a not null value on the attribute Salary:

select count (all Salary) from Employee

Let us turn to the other four operators sum, max, min and avg. They allow as argument an attribute or expression, possibly preceded by one of the keywords, distinct or all. The aggregate functions sum and avg allow as argument only expressions that represent numeric values or intervals of time. The functions max and min require only that an order be defined in the expression, making them applicable also to character strings and instants of

(sum | max | min | avg(([distinct | all] AttnbutteExpression)
The operators apply to the rows that are selected by the where clause of the query, and have the following meanings:

· sum returns the sum of the values possessed by the attribute expression;

· max and min: return respectively the maximum and minimum values;

· avg returns the average of the values of the attribute expression.

The keywords distinct and all have the meaning already discussed:

distinct ignores duplicates, while all leaves out only null values; the use of distinct or all with the max and min operators has no effect on the result.

The various implementations of SQL frequently offer a wider range of aggregate operators, providing statistical operators such as variance, standard deviation, median, etc.

Query 23 Find the sum of the salaries of the Administration department:

select sum(Salary)
from Employee
where Dept = 'Administration'

We can also evaluate several aggregate operations in a single query.

Query 24: Find the maximum, the average and the minimum salaries of all employees:

select max(Salary), avg(Salary), min(Salary)
 from Employee

Aggregate evaluation may take place after an arbitrary query, such as the following one which has a join.

Query 25: Find the maximum salary among the employees who work in a department based in London.

select max(Salary)
from Employee, Department
where Dept = DeptName and Department.City = 'London'

Note that the following version of the same query is not correct:

Query 26:

select FirstName, Surname, max(Salary)
 from Employee, Department
where Dept = DeptName and Department.City = 'London'

On an intuitive level, this query would select the highest value of the Salary attribute, and thus would automatically select the attributes FirstName and Surname of the corresponding employee. However, such semantics could not be generalized to the aggregate queries, for two reasons. In the first place, there is no guarantee that the operator will select a single element, given that there could be more than one row containing a particular salary. In the second place, written like this, the query could be applied to the operators max and min,. but would have no meaning for the other aggregate operators. Therefore, the SQL syntax does not allow aggregate functions and attribute expressions (such as, for example, attribute names) within the same target list (except for queries with the group by clause, described in the next section).

4.2.4 Group by queries
We have described the aggregate operators as those that are applied to a set of rows. The examples that we have seen up to now operate on all the rows that are produced as the result of the query. It is often necessary to apply an aggregate operator more finely, to specific subsets of rows. To use the aggregate operator like this, SQL provides the group by clause, which makes it possible to specify how to divide the table up into subsets. The clause accepts as argument a set of attributes, and the query will operate separately on each set of rows that possess the same values for this set of attributes.

To understand the meaning of the group by clause better, let us analyse how an SQL query using the group by clause is executed.

Query 27: Find (he sum of salaries of all the employees of the same department:

select Dept, sum(Salary)
from Employee
group by Dept

Suppose (hat the table contains the information shown in Figure 4.20.

First, the query is considered as if the group by clause did not exist, selecting the attributes that appear either as the argument of group by or within an expression that is the argument of the aggregate operator. In the query we are looking at, it is as if the following query were executed:

select Dept, Salary from Employee

The result is shown in Figure 4.21.

The resulting table is then analyzed, dividing the rows into subsets sharing the same value on the attributes that appear in the group by clause. In the example, the rows are grouped according to the same value of the attribute Dept (Figure 4.22).

Once the rows are partitioned into subsets, the aggregate operator is applied separately to each subset. The result of the query consists of a table with rows that contain the results of the evaluation of the aggregate operators, possibly alongside the values of the attributes used for the aggregation. In Figure 4.23 the final result of the query is shown, giving the sum of the salaries paid to the employees of the department, for each department.

The SQL syntax imposes the restriction that whenever the group by clause is used, the attributes that can appear in the select clause must be a subset of the attributes used in the group by clause. References to these attributes are possible because each tuple of the group will be characterized by the same values. The following example shows the reasons for this limitation:

Query 28:

select Office
from Employee
group by Dept

This query is incorrect, in that a number of values of the Office attribute will correspond to each value of the Dept attribute. Instead, after the grouping has been carried out, each sub-group of rows must correspond to a single row in the table resulting from the query.

On the other hand, this restriction can sometimes seem excessive, such as when we need to show the values of attributes that exhibit single values for given values of the grouping attributes. (We say that the attributes functionally depend on the grouping attributes; see Section 8.2 for a discussion of functional dependencies.)

Query 29:
select DeptName, count (*), D. City
from Employee E join Department D on (E.Dept = D.DeptName)
group by DeptName

This query should return the department name, the number of employees of each department, and the city in which the department is based. Given that the attribute DeptName is the key of DEPARTMENT, a particular value of City corresponds to each value of DeptName. The system could therefore provide a correct response, but SQL prohibits queries of this nature. In theory the language could be modified in such a way as to allow the identification of the attributes that are keys to the schemas of the tables, and highlight the attributes that could appear in the target list. In practice it was preferred to keep the Language simple, possibly requiring that the query use a redundant group of attributes. The query can be correctly rewritten as follows:

Query 30:

select DeptName, count(*), D.City
from Employee E join Department D on (E.Dept. = D.DeptName)
group by DeptName, D.City

Group predicates. We have seen how rows can be organized into subsets by means of the group by clause. It is sometimes possible that an application needs to consider only the subsets that satisfy certain conditions. If the conditions that must be satisfied by the subsets are verifiable at the single row level, then it is sufficient to use the appropriate predicates as the argument of the where clause. If, however, the conditions have to refer to values that are the result of aggregations, we have to use a new construct, the having clause.

The having clause describes the conditions that must be applied at the end of the execution of a query that uses the group by clause. Each subset of rows forms part of the result of the query only if the predicate argument of having is satisfied.

Query 31: Find which departments spend more than 100 thousand on salaries:

select Dept
from Employee
group by Dept
having sum(Salary) > 100

Applying the query to the table shown in Figure 4.20, we follow the steps described for group by queries. Once the rows have been grouped according to the value of the Dept attribute the predicate argument of the having clause is evaluated. This selects the departments for which the sum of the values of the attribute Salary, for all the rows of the subset is higher than 100. The result of the query is shown in Query 4 24

The syntax also allows for the definition of queries using the having clause without a corresponding group by clause. In this case the entire set of rows is treated as a single group, but this has very limited application possibilities, because if the condition is not satisfied, the resulting table will be empty. Like the where clause, the having clause will also accept as argument a Boolean expression of simple predicates. The simple predicates are generally comparisons between the result of the evaluation of an aggregate operator and a generic expression. The syntax also allows the presence of predicates on the attributes forming the argument of the group by, but it is preferable to collect all such simple conditions into the context of the where clause. To establish which predicates of a query that uses grouping are arguments of the where clause and which are arguments of the having clause, we establish only the following criterion: only the predicates containing aggregate operators should appear in the argument of the having clause.

Query 32: Find the departments in which the average salary of employees working in office number 20 is higher than 25 thousand:

select Dept
from Employee
where Office = '20'
group by Dept
having avg(Salary) > 25

The general concise form of an SQL query thus becomes;

SelectSQL ::= select TargetList
 from TableList
 [where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]
4.2.5 Set queries
SQL also provides set operators, similar to those we saw in relational algebra. The available operations are union (for which the operator is union), intersection (intersect) and difference (except or minus). Each has a meaning similar to the corresponding relational algebra operator.

Note that each query that uses the intersect and except operators can be expressed using other constructs of the language (generally using nested queries, which we will discuss in Section 4 2.6). On the other hand, for the same reasons discussed in Section 3.2.3 for relational calculus with range declarations, the union operator enhances the expressive power of SQL and allows the definition of queries that would otherwise be impossible.

The syntax for the use of the operators is as follows:

SelectSQL {(union | intersect | except([all] SelectSQL}

Set operators, unlike the rest of the language, assume the elimination of duplicates as a default. We can see two reasons for this. Firstly, the elimination of duplicates is much closer to the intuitive semantics of these operators. Secondly, their execution (particularly difference and intersection} requires a computation for which the additional cost of eliminating duplicates would be negligible. If we wish to adopt a different interpretation of the operators in the query, and we wish to use set operators that maintain the duplicates, it is sufficient to specify the all keyword when using the operator. In the following examples we will compare what happens in both cases. A further observation is that SQL does not require the schemas on which the operations are executed to be identical (unlike relational algebra), but only that the attributes have compatible domains. The correspondence between the attributes is not based on the name but on the position of the attributes. If the attributes have different names, the result normally uses the names of the first operand.

Query33: Find the first names and surnames of the employees:

select FirstName as Name
 from Employee
 union
select Surname
from Employee
The query first obtains the values of the attribute FirstName for the rows of EMPLOYEE. It then obtains the values of the attribute Surname for the same rows and finally constructs the table by uniting the two partial results. Given that the set operators eliminate the duplicates, there will be no repeated elements in the resulting table, in spite of the presence of duplicates in both the initial tables, and in spite of the presence of some identical values in both tables. Taking the initial data to be that of the table in Figure 4.20, the result of the evaluation of the query is shown in Figure 4-25.
Query 34: Find the first names and the surnames of all the employees, except those belonging to the Administration department, keeping the duplicates:

select FirstName as Name
from Employee
where Dept <>
 'Administration'
 union all
select Surname
from Employee
where Dept <> 'Administration'

In this case all the duplicates are retained. The result of the query, again based on the table in Figure 4.20, is shown in Figure 4.26.

Query 35: Find the surnames of employees that are also first names:

select FirstName as Name
from Employee
 intersect
select Surname
 from Employee

From this query, we obtain the result in Figure 4.27.

Query-36: Find the first names of employees that are not also surnames:
select FirstName as Name
from Employee
except
select Surname
 from Employee

The result of this query is shown in Figure 4.28.

4.2.6 Nested queries
Up to now. we have looked at queries in which the argument of the where clause is based on compound conditions in which each predicate represents a simple comparison between two values. SQL also allows the use of predicates with a more complex structure, in which a value expression can be compared with the result of the execution of an SQL query. The query used for the comparison is defined directly in the internal predicate of the where clause and is known as a nested query.
The value expression to be used as the first operand in the comparison is most typically an attribute name. In this case, we are then confronted with the problem of heterogeneity in the terms of the comparison. On one side of the comparison we have the result of the execution of a query in SQL, generally a set of values, while on the other side we have the value of the attribute for the particular row. The solution offered by SQL consists of using the keywords all or any to extend the normal comparison operators (=, <>. <. >, <= and >=). The keyword any specifies that the row satisfies the condition if the comparison predicate of the attribute value for the row is true with at least one of the elements returned by the query. The keyword all specifies that the row satisfies the condition only if all the elements returned by the nested query make the comparison true. The syntax requires that the domain of the elements returned by the nested query is compatible with the attribute with which the comparison is made.

Query 37 Find the employees who work in departments in London:

select FirstName, Surname
from Employee
where Dept = any (select DeptName
 from Department
 where City = 'London')

The query selects the rows of EMPLOYEE for which the value of the attribute Dept is equal to at least one of the values of the DeptName attribute of the rows of DEPARTMENT with City equal to London.

This query can also be expressed using a join between the tables EMPLOYEE and DEPARTMENT, and, in fact, the optimizers are generally able to deal with the two different formulations of this query in the same way. The choice between one representation and the other can be influenced by the degree of readability of the solution. In cases as simple as these, there is no difference, but for more complex queries, the use of several nested queries can improve readability.

Let us consider a query that allows us to find the employees belonging to the Planning department who have the same first name as a member of the Production department. The query lends itself to both possible formulations: the first is more compact and uses variables.

Query 38:

select E1.FirstName, E1. Surname
from Employee E1, Employee E2
where E1.FirstName = E2.FirstName and
E2.Dept = 'Production- and E1.Dept = 'Planning'

The second method uses a nested query, expressing the query without needing aliases:

Query 39:

select FirstName, Surname
from Employee
where Dept = 'Planning' and
FirstName = any (select Firstname
 from Employee
 where Dept = 'Production')

We consider now a different query:

Query 40: Find the departments in which there is no one named Brown:

select DeptName
from Department
where DeptName <> all (select Dept
 from Employee
 where Surname = 'Brown')

The nested query selects the values of Dept for all the rows in which the surname is Brown. The condition is therefore satisfied by the rows of DEPARTMENT for which the value of the attribute DeptName is not among the values produced by the nested query. This query could not be expressed by means of a join. Note how this query could have been implemented in relational algebra using the following expression: (Deptname(DEPAETMENT) – (DeptName(Dept(Dept((Surname=’Brown’(EMPLOYEE))), and therefore could also have been expressed using the set operator except as follows:

Query 41:

select DeptName
from Department
except
select Dept as DeptName
from Employee
where Surname = 'Brown'

SQL offers two special operators to represent set membership and its negation, in and not in. These are indeed shorthand for = any and <> all respectively. Examples of their use are given in the queries of the next section.

Finally we can observe how some queries that use the operators max and min could be expressed by means of nested queries.

Query 42: Find the department of the employee earning the highest salary (using the aggregate function max).
select Dept. from Employee
where Salary = any (select. max(Salary) from Employee)

Query 43: Find the department of the employee earning the highest salary (using only a nested query):

select Dept from Employee
where Salary >= all (select Salary from Employee)

The two queries are equivalent in that the maximum value is exactly the value that is greater than or equal to all the values of the same attribute in the other rows of the relation. In these cases, however, it is advisable to use the aggregate operator, as it gives a more readable result (and possibly it is executed more efficiently). It is also interesting to note that for the first nested query there is no difference between using the keywords any and all, since the query always returns a single row.

Complex nested queries. A simple and intuitive interpretation for understanding nested queries lies in the assumption that the nested query is executed before the analysis of the rows of the external query- The result of the query can be saved in a temporary variable and the predicate of the external query can be evaluated by using the temporary result. What is more, this interpretation produces an efficient execution, since the nested query is processed only once. Consider again Query 40. The system can first carry out the nested query, which returns the value of the Dept attribute for all the employees named Brown. Once this is done, each department is then checked to see that the name is not included in the table produced, using the operator <> all.

Sometimes, however, the nested query refers to the context of the query in which it is enclosed; this generally happens by means of a variable defined within the external query and used in the internal query. Such a mechanism is often described as the 'transfer of bindings’ from one context to another. This mechanism enhances the expressive power of SQL. In this case, the simple interpretation given before for nested queries is no longer valid. Instead, it is necessary to reconsider the standard interpretation of sql queries, which first compute the cartesian product of the tables in the from clause and next evaluate the where clause on each row. The nested query is a component of the where clause and it must also be evaluated separately for every row produced by the consideration of the external query. Thus, the new interpretation is the following: for each row of the external query, we first evaluate the nested query, and then compute the row-level predicate of the external query. Such a process can be arbitrarily nested for an arbitrarily complex use of variables within the nested queries; however, the readability and declarative nature of the language are compromised. With regard to the visibility (or scope) of sql variables, there is a restriction on the use of a variable: a variable can be used only within the query in which it is defined or within a query that is recursively nested in the query where it is defined. If a query contains nested queries at the same level (on distinct predicates), the variables introduced in the from clause of a query cannot be used in the context of another query. The following query, for example, is incorrect.

Query 44:

select •
from Employee
where Dept in (select DeptName
 from Department D1
 where DeptName = 'Production') or
 Dept in (select DeptName
 from Department D2
 where D1.City = D2.City)

We exemplify the meaning of complex nested queries together with the description of a new logical operator, exists. This operator allows a nested query as a parameter and returns the true value only if the query does not produce an empty result. This operator can be usefully employed only if there is a binding transfer between the external query and the nested query.

Consider a table PERSON(TaxCode, FirstName, Surname, City) describing people's tax records.

Query 45: Find all the homonyms, that is, persons who have the same first name and surname but different lax codes:

select *
from Person P
where exists (select *
 from Person P1
 where P1.FirstName = P.FirstName and
 P1.Surname <> P.Surname and
 P1.TaxCode <> P.TaxCode)

The query searches the rows of the PERSON table for which there exists a further row In PERSON with the same FirstName and Surname, but a different TaxCode.

In this case, we cannot execute the nested query before evaluating the external query, given that the nested query is not properly defined until a value has been assigned to the variable P. It is necessary, instead, to evaluate the nested query for every single row produced within the external query. Thus, in the example, the rows of the variable P will first be examined one by one. For each of these rows, the nested query will be executed and it will return or not the empty result depending upon whether or not there are persons with the same name and surname. This query could also have been formulated with a join of the PERSON table with itself.

Consider now a different query.

Query 46: Find all persons who do not have homonyms:

select *
from Person P
where not exists (select *
 from Person P1
 where Pl.FirstName = P.FirstName and
 P1.Surname = P.Surname and
 P1.TaxCode <> P.TaxCode)

The interpretation is similar to that of the preceding query, with the single difference that the predicate is satisfied if the nested query returns an empty result. This query could also have been implemented by a difference that subtracted from all the first names and surnames, those of the people sharing .a first and second name, determined using a join.

Another way to formulate the same query uses the tuple constructor, represented by a pair of curved brackets that enclose the list of attributes.

Query 47: Find all the persons who do not have homonyms (using the tuple constructor):

select *
from Person P
where (FirstName, Surname) not in (select FirstName, Surname
 from Person P1
 where P1.TaxCode <> P.TaxCode)

Consider a database with a table SlNGER(Name, Song) and a table SONGWRITER(Name, Song)

Query 48: Find the singers who have performed only their own songs:

select Name from Singer
where Name not in (select Name
 from Singer S
 where Name not in (select Name
 from Songwriter
 where Songwriter.Song = S.Song))

The external query has no link with the nested queries, and therefore can be initially suspended, waiting for the result of the first-level nested query. Such first-level query, however, presents a binding. Therefore, the query is executed by means of the following phases.

1. The nested query select Name from Singer S is applied to all the rows of the table Singer.

2. For each row. the most internal query is evaluated. This returns the names of the songwriters of the song titles appearing in the rows of S. Thus, if the name of the singer does not appear among the names of the songwriters (which therefore means that the singer is not the writer of the song he sings), then the name is selected.

3. Finally, the table that contains the names of the singers who have performed only their own songs (the more external query) is constructed. This query returns all the rows whose Name docs not appear as result of the nested query.

The logic of this query execution is more evident when we consider that the query can be expressed in the same way by using the except operator;

Query 49:

select Name
from Singer
except
select Name
from Singer S
where Name not in (select Name
 from Songwriter
 where Songwriter.Song = S.Song)

Commercial SQL systems do not always carry out the nested queries internally by scanning the external table and producing a query for every row of the relation. Instead, they try to process as many queries as possible in a set oriented way with the aim of handling a large quantity of data by means of as few operations as possible. Several optimizations are possible, such as retaining the results of the nested subqueries for multiple uses and anticipating the evaluation of the parts of query predicates that are not nested. We will discuss optimization issues further in Section 9.6.

4.3 Data modification in SQL
The Data Manipulation Language of sql includes commands for querying and modifying the database. The commands that allow the modification of the contents of a database are insert, delete and update. We will analyze the individual commands separately, although, as we shall see, they have similar forms

4. 3.1 Insertions
The command for inserting a row into the database offers alternative syntaxes:

insert into TableName [{AttnbuteList}] (values {ListOfValues} | SelectSQL(
The first form allows the insertion of single rows into the tables. The argument of the values clause represents explicitly the values of the attributes of the single row. For example:

insert into Department(DeptName, City)
 values ('Production', ‘Toulouse’)

The second form allows the addition of a set of rows. which are first retrieved from the database.

The following command inserts the results of the selection from the table PRODUCT of all the rows having London as the value of the attribute ProdArea. into the table LONDONPRODUCTS.

Insert into LondonProducts
(select Code, Description
 from Product
 where ProdArea = 'London')

The two forms have different applications. The first case is typically used in programs to fill in a table with data provided directly by the users. Each use of the insert command is generally associated with the filling of a form. that is, a friendly interface in which the user supplies values for various attributes. The second case inserts data into a table based on other information already present in the database.

If the values of some of the attributes of the table are not specified during an insertion, the default value is assigned to them, or failing this, the null value (Section 4.1.6). If the insertion of the null value violates a not null constraint defined on the attribute, the insertion will be rejected. Finally. note that the correspondence between the attributes of the table and the values to be inserted is dictated by the order in which the terms appear in the definition of the table. For this reason, the first element of the ValuesList (for the first form of the statement) or the first clement of the target list (for the second form) must correspond to the first attribute that appears in AttnbuteList (or in the definition of the table if AttributeList is omitted), and so on for the other attributes.

4.3.2 Deletions
The delete command eliminates rows from the tables of the database following this simple syntax:

delete from TableName [where Condition]
When the condition forming the subject of the where clause is not specified, the command removes all the rows from the table, otherwise only the rows that satisfy the condition are deleted. In case there is a referential integrity constraint with a cascade policy in which the table is referenced, the cancellation of rows of the table can cause the cancellation of rows belonging to other tables. This can generate a chain reaction if these cancellations in their turn cause cancellation of rows in other tables.

delete from Department where DeptName = 'Production'

The command deletes the row of department having the name Production. (Since DeptName was declared as the primary key for the table, there can be only one row having that particular value.)

The condition has the same syntax as in the select statement, which means that nested queries referring to other tables can appear within it. A simple example is the command that deletes the departments without employees:

delete from Department
where DeptName not in (select Dept
 from Employee)

Note the difference between the delete command and the drop command described In Section 4.1.8. A command such as:

delete from Department

deletes all the rows of the DEPARTMENT table, possibly also deleting all the rows of the tables that are linked by referential integrity constraints with the table, if the cascade policy is specified in the event of deletion. The schema of the database remains unchanged, however, and the command modifies only the database instance. The command:

drop table Department cascade

has the same effect as the command delete, but in this case the schema of the database is also modified, deleting the DEPARTMENT table from the schema, as well as all the views and tables that refer to it in their definitions. However, the command:

drop table Department restrict

fails if there are rows in the department table.

4.3.3 Updates
The update command is slightly more complex.

update TableName
set Attribute = (Expression | SelectSQL | null | default(
 {, Attribute = (Expression | SelectSQL | null | default(}
[where Condition]

The update command makes it possible to update one or more attributes of the rows of TableName that satisfy a possible Condition. If the condition does not appear, a true value is assumed as default, and the modification is carried out on all the rows. The new value to which the attribute is assigned, can be one of the following:

(BR1). the result of the evaluation of an expression on the attributes of the table;

(BR2). the result of an SQL query;

(BR3). the null value; or,

(BR4). the default value for the domain.
The command:

update Employee set Salary = Salary + 5 where RegNo = 'M2047'-

operates on a single row, updating the salary of the employee number M2047 whereas the following example operates on a set of rows.

update Employee set Salary = Salary • 1.1
where Dept = 'Administration'

The command produces a 10% salary increase for all the employees who work in Administration. The assignment operator has the usual property, for which Salary on the right-hand side of the operator represents the old value. which is evaluated for every row to which the update must be applied. The result of the expression becomes the new value of the salary.

The set-oriented nature of sql should be taken into account when writing update commands. Suppose we wish to modify the employees’ salaries, increasing the salaries under 30 thousand by 10%, and the higher salaries by 15%. One way to update the database to reach this goal is to execute the following command:

update Employee set Salary = Salary •1.1 where Salary <= 30
update Employee set Salary = Salary*1.15 where Salary > 30

The problem with this solution is that if we consider an employee with an initial salary of 28 thousand, this will satisfy the first update command and the Salary attribute will be set equal to 30.8. At this point, however, the row also satisfies the conditions of the second update command, and thus the salary will be modified again. The final result is that for this row the total increase is 26.5%.

The problem originates because SQL is set-oriented. With a tuple-oriented language it would be possible to update the rows one by one and apply one or the other modification according to the value of the salary. In this particular case, the solution is to invert the order of execution of the two commands, first increasing the higher salaries and then the remaining ones. In more complex situations, the solution might require the introduction of intermediate updates, or a complete change of approach using a program in a high-level programming language, using cursors. This technique will be described in Section 4.6.

4.4 Other definitions of data in SQL
Having described how to formulate queries in SQL, we can complete the summary of the components of a schema. We will now describe the check clause, assertions and the primitives for the definition uf views.

4.4.1 Generic integrity constraints
We have seen bow SQL allows the specification of a certain set of constraints on the attributes and tables, satisfying the most Important, but not all. of the application requirements. For the specification of further constraints, SQL-2 has introduced the check clause, with the following syntax:

check {Condition)
The conditions that can be used are those that can appear in the where clause of an SQL query. The condition must always be verified to maintain the correctness of the database. In this way it is possible to specify all the tuple constraints we discussed in Section 2.2.1 and even more, because the Condition can include references to other fields.

An effective demonstration of the power of the construct is to show how the predefined constraints can all be described by means of the check clause. For this, we can redefine the schema of the first version of the EMPLOYEE table given In Section 4. 1 .7:

create table Employee (
RegNo character(6)
 check (RegNo is not null and
 1 = (select count((*) from Employee E where RegNo = E.RegNo),
Surname character (20)
 check (Surname is not null),
Name character(20)
 check (Name is not null and
 1 = (select count (•)
 from Employee E
 where Name = E.Name and Surname = E.Surname)),
Dept character(15)
 check (Dept in (select DeptName from Department))
)
By comparing this specification with the one using predefined constraints, we can make a number of observations. First, the predefined constraints allow a more compact and readable representation; for example, the key constraint requires a fairly complex representation, which uses the aggregate operator count. Note also that using the check clause, we lose the possibility of assigning a policy of reaction to violations to the constraints. Finally, when the constraints are defined using the predefined constructs, the system can recognize them immediately and can verify them more efficiently.

To understand the power of the new check construct, we can for example, describe a constraint that forces the employee to have a supervisor of his own department only if the registration number does not begin with the value 1. The above table definition can be extended with the following declaration:

Superior character (6)
 check (RegNo like '1%' or
 Dept = (select Dept
 from Employee E
 where E.RegNo = Superior))

4.4.2 Assertions
Besides the check clause, we can define a further component of the schema of the database, assertions. Introduced in SQL-2, these represent constraints that are not associated with any row or table in particular, and belong to the schema.

Using assertions, we can express all the constraints that we have already specified when dealing with table definitions. But assertions also allow the expression of constraints that would not otherwise be expressible, such as constraints on more than one table or constraints that require that a table have a minimum cardinality. Assertions are named, and therefore they can be explicitly dropped by means of the drop instruction for schema updates (see Section 4.1.8).

The syntax for the definition of assertions is as follows:

create assertion AssertionName check (Condition)

An assertion can for example impose that in EMPLOYEE there is always at least one row present.

create assertion AllwaysOneEmployee
check (1 <= (select count(•)
 from Employee))

Every integrity constraint, either check or assertion, is associated with a check policy that indicates whether it is immediate or deferred. Immediate constraints are verified immediately after each modification of the database, while deferred constraints are verified only at the end of a series of operations, called a transaction. When an immediate constraint is not satisfied it is because the specific data modification operation causing the violation was just executed and it can be 'undone'; this is called partial rollback. All the fixed format constraints, introduced in Section 4.1.6 (not null. unique, primary key) and Section 4.1.7 (foreign key), are immediately verified, and their violation causes a partial rollback. When instead a violation of a deferred constraint is detected at the end of a transaction, the data modification operation causing the violation is not known, and therefore the entire transaction has to be undone; this is called rollback. Transactions and rollbacks are discussed further in Chapter 9, on database technology. Due to the above mechanisms, the execution of a data manipulation instruction on a database instance that satisfies all the constraints will always produce a database instance that also satisfies all the constraints. We also say that they produce a 'consistent database state'. Consistency is defined in Section 9. 1.

Within a program, we can change the attribute of a constraint, by setting it immediate or deferred; this is done by means of the commands set constraints [ConsraintName] immediate and set constraints [Constraint-Name] deferred.
4.4.3 Views

In Chapter 3 views were introduced as 'virtual' tables, whose contents depend on the contents of the other tables in the database. Views are defined in SQL by associating a name and a list of attributes with the result of the execution of a query. Other views can also appear within the query that defines the view. However, views cannot be mutually dependent, either immediately (defining a view in terms of itself), or transitively (defining a view V1 using a view V2, V2 using V3 and so on until Vn is defined by means of V1).

A view is defined using the command:

create view ViewName [(AttributeList)] as SetectSQL
 [with [local | cascaded] check option]

The SQL query and the schema of the view must have the same number of attributes. We can, for example, define a view ADMINEMPLOYEE that contains all the employees in the Administration department with a salary higher than 10 thousand.

create view AdminEmployee (RegNo, FirstName, Surname, Salary) as
select RegNo, FirstName, Surname, Salary
from Employee
where Dept ='Administration' and Salary > 10

We can now construct a view JUNIORADMINEMPLOYEE based on the ADMINEMPLOYEE view, which will contain the administrative employees with a salary between 10 thousand and 50 thousand:

create view JuniorAdminEmployee as
select *
from AdminEmployee
where Salary < 50
with check option

On certain views, we can carry out modification operations; these must be translated into the appropriate modification commands on the base tables on which the view depends. As we have already mentioned in Chapter 3, we cannot always find an unambiguous way of modifying the base table or tables. Difficulties are encountered, particularly when the view is defined by means of a join between more than one table. In standard SQL a view can be updated only when a single row of each base table corresponds to a row in the view.

Commercial SQL systems generally consider that a view can be updated only if it is defined on a single table; some systems require that the attributes of the view should contain at least a primary key of the table. The check option clause can be used only in the context of views that can be updated. It specifies that update operations can be carried out only on rows belonging to the view, and after the update the rows must continue to belong to the view. This can happen, for example, if a value is assigned to an attribute of the view that makes one of the selection predicates false. When a view is defined in terms of other views, the local or cascaded option specifies whether the control over row removal must be made only at the (local) view or whether it must be propagated to all the views on which the view depends. The default option is cascaded.

Since the JUNIORADMINEMPLOYEE view has been defined using the check option, an attempt to assign a value of 8 thousand to the Salary attribute would not be accepted by the present definition of the view, but would be accepted if the check option were defined as local. A modification of the Salary attribute of a row of the view to allocate the value 60 thousand would not be accepted even with the local option.

4.4.4 Views in queries

Views can be used in SQL to formulate queries that it would otherwise be impossible to express. Using the definition of appropriate views, we can define queries in SQL that require a nesting of various aggregate operators, or that make a sophisticated use of the union operator. In general, views can be considered as a tool that increases the possibility of creating nested queries.

We wish to determine which department has the highest expenditure on salaries. In order to achieve this we define a view that will be used by Query 50.

create view SalaryBudget (Dept, SalaryTotal) as
select Dept, sum(Salary)
from Employee
group by Dept

Query 50: Find the department with the highest salary expenditure.

select Dept from SalaryBudget
where SalaryTotal = (select max(SalaryTotal) from SalaryBudget)

The definition of the view SALARYBUDGET builds a table in which there appears a row for every department. The attribute Dept corresponds to the attribute Dept of EMPLOYEE and contains the name of the department. The second attribute SalaryTotal contains, for each department, the sum of the salaries of all the employees of that department

Another way to formulate the same query is as follows:

Query 51:

select Dept
from Employee
group by Dept
having sum(Salary) >= all (select sum(Salary)
 from Employee
 group by Dept)

This solution is not recognized by all SQL systems, which may impose that the condition in the having clause must be a simple comparison with an attribute or a constant, and cannot use a nested query. We can give another example of the use of views to formulate complex queries.

create view DeptOffice(DeptName,NoOfOffices) as
select Dept, count(distinct Office)
from Employee
group by Dept

Query 52; Find the average number of offices per department:

select avg(NoOfOffices) from DeptOffice

We could think of expressing the same query like this:

Query 53:

select (avg(count(distinct Office)) from Employee group by Dept

The query is, however, incorrect, because the SQL syntax does not allow the cascading of aggregate operators. The basic problem is that the evaluation of the two different operators happens at different levels of aggregation, whereas a single occurrence of the group by clause for every query is admissible.

4.5 Access control

The presence of data protection mechanisms takes on great importance in modern applications. One of the most important tasks of a database administrator is the choice and implementation of appropriate access control policies. SQL recognizes the importance of this aspect and a set of instructions is dedicated to this function.

SQL is designed so that every user is identifiable by the system in a way that is unambiguous. The user identification can exploit the capabilities of the operating system (so that each user of the system corresponds to a user of the database), or database users can be independent of system users. Most commercial systems offer an independent organization, each with its own identification procedure In this way, more than one system user can correspond lo a database user and vice versa.

4.5.1 Resources and privileges

The resources that are protected by the system are usually tables, but we can protect any of the system components, such as the attributes of a table, views and domains.

As a rule, the user who creates a resource is its owner and is authorized to carry out any operation upon it. A system in which only the owners of the resources were authorized to make use of them would be of limited use, as would a system in which all the users were able to use every resource in an arbitrary manner. SQL however, offers flexible organization mechanisms that allow the administrator to specify those resources to which the users may have access, and those that must be kept private. The system bases access control on a concept of privilege. The users possess privileges of access to the systems resources.

Every privilege is characterized by the following:

4. the resource to which it refers;

5. the user who grants the privilege:

6. the user who receives it;

7. the action that is allowed on the resource; and,

8. whether or not the privilege can be passed on to other users.

When a resource is created, the system automatically concedes all the privileges on that resource to its creator. In addition, there is a predefined user, _system, which represents the database administrator, who possesses all privileges on all resources. The available privileges are as follows:

· insert: allows the insertion of a new object into the resource (this can be applied only to tables or views);

· update: allows the value of an object to be updated (this can be used on tables, views, and attributes);

· delete: allows the removal of an object from the resource (tables or views only):

· select: allows the user to read the resource, in order to use it within a query (used on tables, views and attributes);

· references: allows a reference to be made to a resource in the context of the definition of a table. It can be associated only with tables and specific attributes. With the reference privilege (say on the table DEPARTMENT, property of Paolo), a user who is granted the privilege (say, Stefano) is able to define a foreign key constraint (for example, on his table EMPLOYEE) referencing the resource that is granted (for example, the key of DEPARTMENT). At this point, if Stefano specifies a no action policy on the referential integrity constraint, Paolo is prevented from canceling or modifying rows of his own table DEPARTMENT, if such an update command renders the contents of EMPLOYEE incorrect. Thus, giving out a references privilege on a resource might limit the ability to modify that resource;

· usage: applies to domains, and allows them to be used, for example, in the definition of the schema of a table.

The privilege of carrying out a drop or an alter on an object cannot be granted, but remains the prerogative of the creator of the object itself. Privileges are conceded or remitted by means of the instructions grant and revoke.
4.5.2 Commands for granting and revoking privileges

The syntax of the grant command is as follows:

grant Privilege on Resource to Users [with grant option]

The command allows the granting of Privileges on the Resource to the Users. For example, the command:

grant select on Department to Stefano

grants to the user Stefano the select privilege on the DEPARTMENT table. The with grant option clause specifies whether the privilege of propagating the privilege to other users must also be granted. We can use the keywords all privileges in place of the distinct privileges. These identify all the privileges that the user can grant on a particular resource. Thus the command:

grant all privileges on Employee to Paolo, Riccardo

concedes to the users Paolo and Riccardo all the privileges on the EMPLOYEE table that can be granted by whoever executes the command.

The revoke command does the reverse, taking away privileges that a user had already been granted.

revoke Privileges on Resource from Users [restrict | cascade]

Among the privileges that can be revoked, apart from those that can appear as subject of the grant command, there is also the grant option privilege, which derives from the use of the clause with grant option.

The only user who can revoke privileges from another user is the user who granted the privileges in the first place; a revoke can take away all or a subset of the privileges that were originally granted. The default option restrict specifies that the command must not be carried out in case revoking this users privilege causes a further revoking of privileges. This can happen when the user has received the privileges with the grant option and has propagated the privileges to other users. In a situation of this nature, the restrict option will cause an error to be signaled. With the cascade option instead, the execution of the command is imperative; all the privileges that were propagated are revoked and all the elements of the database that were constructed by exploiting these privileges are removed. Note that in this case too, the cascade option can generate a chain reaction, in which for each element removed, all the objects that have some dependent relation to it are also removed. As in other such cases, it is necessary to be very careful that a simple command does not produce extensive and undesirable modifications on the database.

It is not only the revoke command that can produce chain reactions: the grant command can also produce similar effects. It can happen that a user has received a privilege on a table that has allowed him to create views that refer to this table, by means of, for example, the select privilege If the user is granted further privileges on the table, then these privileges will be automatically extended to cover the views (and subsequently to views constructed on these views).

4.6 Use of SQL in programming languages

It is rare that access to information contained in a database happens as a result of personal interaction using SQL. In practice, by far the most typical use of a database happens by means of integrated applications built into the information system, while direct use of the SQL interpreter is reserved for a few expert men.

The use of special applications rather than the SQL interpreter to gain access to information is justified by a number of factors. Very often, access to the information is not required directly by a user but by a non-interactive (batch) application. Further, for interactive users, the access techniques are often simple and predictable. It is therefore useful to reduce the complexity of access to the database by constructing an application that provides a simplified interface for carrying out the task. Finally, the presentation of the data offered by the system might be unsuitable for the users requirements, while a special application is free from constraints and can provide a representation adequate far the requirements

There are many tools that can be used for the creation of database applications. A thriving market is that of the fourth generation languages (4GLs), highly sophisticated development tools that make it possible to develop complete database management applications with little effort. Most database vendors offer, together with the database manager, a set of tools for the development of applications. Moreover there is a rich supply of products that are not linked to any database in particular, all of which are able to manage a dialogue with the relational system by means of standard SQL. These tools make possible the effective definition of database schemas, and the construction of complex interfaces.

Another method for writing applications uses traditional high-level programming languages. We will concentrate our analysis on this method because it is still of considerable importance, and because of the lack of uniformity among 4GLs.

4.6.1 Integration problems

In order to use SQL instructions within a procedural program, the SQL instructions must be encapsulated within the program. From the implementation point of view, it is necessary to provide the high-level language compiler with a preprocessor. This preprocessor is able to detect the calls to the DBMS services, and submit them to the DBMS query execution environment, which includes the query optimizer. This solution offers the usual advantages of portability and abstraction that already characterize the use of a standard language such as SQL. At execution, the program begins a dialogue with the database, sending the query directly to the system.

One particular problem lies in the fact that programming languages access the elements of a table by scanning the rows one by one, using what is known as a tuple-oriented approach. In contrast, SQL is a set-oriented language, which always acts upon entire tables and not upon single rows. Even the result of an SQL query is an entire table. These aspects cause the problem known as impedance mismatch.
 We will talk further about this problem in Chapter 11, dedicated to object-oriented systems.

There are two possible solutions to this problem The first consists of using a programming language that makes more powerful data constructs available and in particular is able to organize a 'set of rows' type structure in a natural way. This solution is gaining more interest due to the increasing spread of object-oriented programming languages, characterized by powerful type-definition mechanisms. However, most applications are written using languages that do not possess this capability. A further difficulty with this solution is the lack of a standard solution accepted by all systems, for example, by object-oriented and object-relational systems (see Chapter 11).

The second strategy, more commonly used, has been standardized and does not need a complicated extension of existing programming languages, although it is not as high-level and friendly to the programmer as one would like it to be. This solution is based on the use of cursors.

4.6.2 Cursors

A cursor is a mechanism that allows a program to access the rows of a table one at a time; the cursor is defined using a query. Let us look first at the syntax for the definition and use of cursors.

declare CursorName [scroll] cursor for SelectSQL
[for (read only | update [of Attribute {, Attribute}](]

The declare cursor command defines a cursor associated with a particular query on the database. The scroll option specifies whether we wish to allow the program to move freely on the result of the query. The final option for update specifies whether the cursor can be used for expressing an update command, possibly adding the specification of the attributes that will be updated.

open CursorName

The open command applies to a cursor; when invoked, the query is carried out and the query result can be accessed using the fetch command.

fetch [Position from] CursorName into FetchList

The fetch command takes a row from the cursor and returns its values into the variables of the program that appear in FetchList. The FetchList must include a variable for every element in the target list of the query, such that every element of the FetchList is type-compatible with the domains of the elements of the target list of the query. An important concept is that of current row, which represents the last row used by the fetch operation. The Position parameter is used to set the current row. It can assume the following values:

· next (the current row becomes the row that follows the current one};
· first (the first row of the query result):

· last (the last row);

· absolute IntegerExpression (the row that appears in the i-th position of the query result, where i is the result of the evaluation of the expression);

· relative IntegerExpression (the row that appears in the i-th position, starting from the current position).

These options can be used only on condition that the scroll option (which guarantees the possibility of free movement within the result of the query) was specified when the cursor was defined. If the scroll option is not specified, the only value available for the parameter is next; in this case, implementation is easier. as the rows of the result can be discarded immediately after being returned. This can be very useful for reducing response times, particularly when the query returns a large number of rows.

update TableName
set Attribute = (Expression | null | default(
{, Attribute = (Expression | null | default(}
 where current of CursorName
The update and delete commands allow modifications to be made to the database by means of cursors. The only extension required to the syntax of update and delete lies in the possibility of using in the where clause, the keywords current of CursorName, which indicates the current row (that must be updated or removed). The modification commands can be used only if the cursor gives access to an actual row of a table, and is not applicable when the query associated with the cursor requires a join between different tables,

close CursorName

The close command frees the cursor, i.e., communicates to the system that the result of the query is no longer needed. At this point, the resources dedicated to the cursor are released, particularly the memory space storing the result.

A simple example is as follows:

declare EmployeeCursor scroll cursor for
select Surname, Firstname, Salary
from Employee
where Salary < 100 and Salary > 40

In this way the cursor EmployeeCursor is allocated to the query that makes it possible to obtain data relating to the employees who earn between 40 thousand and 100 thousand.

Let us now look at a simple example of a C program that uses cursors. The SQL commands are identified by the character '$' in the first column and the variables of the program are distinguished by the fact that their names are preceded by the ':' (colon) character. The variables must be of a type compatible with the values that they will contain. A predefined variable, sqlcode, is used. It contains zero if the execution of the last command has been successful and a non-zero error code otherwise. Its main use is to detect when the rows of a cursor have all been fetched.

void DisplayDepartmentSalaries(char DeptName[]) (
char Firstname[20]], Surname[20];
long int Salary;
$ declare DeptEmp cursor for
 select FirstName, Surname, Salary
 from Employee
 where Dept = :Deptname;
$ open DeptEmp;
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
printf ("Department %s\n",DeptName);
while (sqlcode == 0) {
 printf("Name of the employee: %s %s",FirstName ,Surname);
 printf(" Salary: %d\n", Salary);
$ fetch DeptEmp into :FirstName, :Surname, :Salary;
}
$ close cursor DeptEmp;
}

Certain queries whose results are guaranteed to consist of a single tuple, called scalar queries, have a simpler interface with the programming language; we do not need to define a cursor on them, but we can use the into clause. In this way, we can directly establish to which variables of the program the result of the query must be assigned. Let us examine how the syntax of the select instruction is extended:

SeleclSQL ::= select TargetList [into VanableList]
 from TableList
 [where Condition]
 [group by GroupingAttributeList]
 [having AggregateCondttion]
 [order by OrderingAttributeList]

Here is an example:

$ select Firstname, Surname into :EmpFName, :EmpSurname
 from Employee where Number = :EmpNumber

The values of the attributes FirstName and Surname of the employee whose registration number is contained in the variable EmpNumber will be copied into the variables EmpFName and EmpSurname.
4.6.3 Dynamic SQL

There are many situations in which it is necessary to allow the user to formulate arbitrary queries on the database.

If the queries have a predefined structure and the part that varies is merely the parameter used in the query, then we can construct the application by means of cursors, as illustrated in the examples in the previous section. There are other cases, however, in which it is necessary to manage queries that require more flexibility. These queries differ not only in the parameters used, but also in the structure of the queries and in the set of tables being accessed. The mechanisms for invoking SQL commands seen in the previous section will not work in this context, given that they require the structure of the queries to be predefined. This family of mechanisms is collectively known as static SQL. An alternative family of commands permits the use of dynamic SQL. These commands make it possible to construct a program that executes SQL commands constructed when the program is run. These commands, however, require special support from the system.

The greatest problem to be overcome is the transfer of parameters between the SQL command and the program, both incoming and outgoing. Given that the SQL command is arbitrary, the program has no way of recognizing at the time of compilation, which are the required input and output parameters of the command. This information is necessary for the program to be able to organize the query internally.

The use of dynamic SQL alters the mode of interaction with the system. In static SQL, the commands can be processed by a compiler, which analyzes the structure of the command and constructs a translation into the internal language of the system. In this way, commands do not need to be translated and optimized each time, but can be executed immediately. This brings considerable advantages in terms of performance. If, for example, a command is carried out repeatedly, with this solution the translation is made only once, whereas interacting with the engine each separate execution of the command would require its own phase of translation.

In dynamic SQL attempts are made to retain these advantages as much as possible, making available two different types of interaction. The query can be carried out immediately, meaning that the execution of the query follows immediately after the analysis, or. alternatively, the management of the query happens in two phases, analysis and execution.

Immediate execution command The execute immediate command requires the execution of an SQL statement, either directly stated or contained in a program variable of type string of characters.

execute immediate SQLStatement
The immediate method can be used only for statements that do not require parameters for either input or output. An example of the use of the command is as follows:

execute immediate “delete from Department where Name = 'Adninistration’
In a C program we could write:

SQLString =
”delete from Department where name = 'Administration'”;
...
$ execute immediate :SOLString

Instead, when a statement is executed more than once, or when the program must organize an exchange of input/output parameters with the query, we must distinguish between the two phases.

Preparation phase. The prepare command analyzes and optimizes an SQL statement and translates it into the internal procedural language of the DBMS.
prepare CommandName from SQLstatement

The SQL statement can contain input parameters, represented by a question mark. For example:

prepare :SQLStatement
from select City from Departmet where Name = ?'

In this case, the translation ion of the query corresponds to the variable SQLStatement with an entry parameter that corresponds to the name of the department that must be selected by the query.
When a prepared SQL statement is no longer needed, we can free the memory occupied by the translated statement by using the deallocate prepare command, with the following syntax:

deallocate prepare CommandName

For example, to deallocate the previous statement, we could use:

deallocate prepare :SQLStatement
Execution phase. To invoke a statement elaborated by prepare, the execute command is used, with the following syntax:

execute CommandName [into TargeList] [using ParameterList]

The target list contains the list of parameters in which the result of the execution of the statement must be written. (This part is optional if the SQL command has no output parameters.) The list of parameters, on the other hand, specifies which values must be assumed by the variable parameters on the list. (This part can also be omitted if the SQL statement has no input parameters.)

Here is an example:

execute :SQLStatement into :city using :department

Suppose that the string Production is assigned to the variable department. The effect of this command is to carry out the query:

select city from Department where Name = 'Production'

and as a consequence to obtain the string Toulouse in the variable city as a result.

Use of cursors with dynamic SQL. The use of cursors with dynamic SQL is very similar to the use made of them with static SQL. There are only two differences. The first is that the query identifier is assigned to the cursor instead of to the query itself. The second is that the commands for use of the cursor allow the specification of the into and using clauses, which allow the specification of possible input and output parameters.

One example of the use of a dynamic cursor is as follows, in which we suppose that the query defined in (he string SQLStatement allows an input parameter:

prepare :SQLStatement from :SQLString
declare PrgCursor cursor from :SQLStatement
open PrgCursor using :PrgVariable

4.6.4 Procedures

Standard SQL allows for the definition of procedures, also known as stored procedures because they are usually stored in the database as components of the schema. As with programming languages, procedures make it possible to associate a name with an SQL statement, with the possibility of specifying parameters to be used for communication to the procedure. The advantages are an increase in the clarity of the program, easier maintenance, and in many cases a noticeable increase in efficiency. Once the procedure has been defined, it is treated as part of the set of predefined SQL commands. As a first example, let us look at the following SQL procedure, which updates the name of the city of a department.

procedure AssignCity(:Dep char(20), :City char(20))
update Department set City = :City where Name = :Dep;

The procedure is invoked by giving a value to the parameters. The following example shows an invocation of the procedure within a C program. using two variables. DeptName and CityName:

$ AssignCity(:DeptName, .:CityName);

Standard SQL-2 does not handle the writing of complex procedures, but is limited to the definition of procedures made up of a single SQL command. Many systems remove this limitation, driven by users' requirements.

The procedural extensions proposed by many systems differ widely among themselves. There are systems that allow only sequences of commands within a procedure, and others that allow the use of control structures, declarations of local variables and the invocation of external programs. In each case the use of these functions is outside the scope of the SQL-2 standard and renders the SQL code thus generated non-portable. SQL-3 extends this aspect of the language and provides a rich syntax for the definition of procedures. In the meantime if we decide to use the procedural extensions provided by a given system, we must also rewrite them in case there is a need to move the application to another environment.

The following example shows a (non-standard) procedure composed of a sequence of two SQL instructions The procedure makes it possible to give to the attribute City the value of :NewCity, for all the rows of DEPARTMENT and EMPLOYEE in which the attribute is equal to :OldCity.

procedure ChangeAllCities(:NewCity char(20), :0ldCity char(20))
begin
 update Department
 set City = :NewCity where City = :0ldCity;
 update Employee
 set City = :NewCity where City = :0ldCity;
end;

One of the extensions usually provided by current systems is the control structure if-then-else, which allows the expression of conditional executions and can be used to handle exceptional conditions. We show an example of a procedure that assigns to City of department :DeptName the value in :NewCity: if the department is not found, a row is inserted into DEPTERROR.

procedure ChangeCity(:DeptName char(20), :NewCity char (20))
begin
if not exists(select *
 from Department
 where Name = :DeptName)
 insert into DeptError values(:DeptName)
else
 update Department set City = :NewCity where Name = :DeptName;
end if;
end:

As we have already indicated, there are commercial systems that offer powerful procedural extensions of SQL; these extensions are often able to make the language computationally complete, that is, to give it the same expressive power as a traditional programming language. The possibility exists therefore, of writing an entire application with this extended SQL. However, this is rarely the best solution, because generally the relational system is optimized only for data access. Finally, let us look at an example of a program written in PL/SQL, the extension of the relational system Oracle Server, to give an idea of the level of functionality offered by these systems. PL/SQL is described in Appendix C:

procedure Debit (ClientAccount char(5), Withdrawal integer) is
OldAmount integer;
NewAmount integer;
Threshold integer;
begin
 select Amount, OverDraft into OldAnount, Threshold
 from BankAccount
 where AccountNo = ClientAccount
 for update of Amount;
NewAmount = OldAmount - Withdrawal;
if NewAmount > OverDraft then
 Update BankAccount set Amount = NewAmount where AccountNo = ClientAccount;
else
 insert into OverDraftExceeded values(ClientAccounc,Withdrawal, sysdate) ;
end if;
end Debit;

The example shows a procedure that subtracts Withdrawal from the account with the code ClientAccount, if there is enough money in the account. The procedure uses local variables (OldtAmount, NewAmount and Threshold) and applies the control structure if- then-else.
4.7 Summarizing examples

1. Consider the following relational schema, which describes the schedule of a competition among national teams:

STADIUM(Name, City, Capacity)
MATCH(StadlumName, Date, Time, Country1, Country2)
NATIONALITY(Country, Continent. Category)

Express the following queries in SQL:
(a) Find the names of the stadiums in which no European teams will play.

SOLUTION

select Name
from Stadium
where Name not in (select StadiumName
 from Match
 where (Country1 in (select Country
 from Nationality
 where Continent = 'Europe'))
 or (Country2 in {select Country
 from Nationality
 where Continent = 'Europe')))

(b) Express query (a) in relational algebra, calculus and Datalog

SOLUTIONS:
i. Relational algebra:

(Name(STADIUM) –
(Name(StadiumName(((Country((Continent=’Europe’(NATONALITY)))
((Country1=Country (Country2=Country((StadiumName,Country1,Country2(MATCH)))

ii. Relational calculus:

{s.Name | s(STADIUM)
|(((m(MATCH) ((n(NAATIONLITY)
(m.StadiumName = s.Name (
n.Continent = 'Europe' (
(m.Country1 = n.Country (w.Country2 = n.Country))))}

iii. Datalog:

STADIUMWITHEUROPE(StadiumName : n) (
MATCH(StadiumName : n. Date : d, Time : t,
Country1 : c1, Country2 : c2), NATIONALTY(Country : c1, Continent: cn. Category : ct), cn= 'Europe'
STADIUMWITHEUROPE(StadiumName : n) (
MATCH(StadiumName : n. Date : d, Time : t,
Country1 : c1, Country2 : c2), NATIONALTY(Country : c2, Continent: cn. Category : ct), cn= 'Europe'
?STADIUM(Name : n. City : c. Capacity : cp).
NOT STADIUMWITHEUROPE (StadiumName: n)
(c) Extract the total capacity or the stadiums in which matches are played and that have a South American national team as the first team. (Note: to evaluate the total capacity, summarize the capacities allocated to each contest, even if many contests take place in the same stadium).

SOLUTION:

select sum(Capacity)
from Stadium join Match on Name = StadiumName
where Country1 in (select Country
 from Nationality
 where Continent = 'South America')

(d) Extract the city in which the Brazil team plays the most matches.

SOLUTIONS:

Here are two solutions.

i. With a specific view:

create view BrazilStad(StadiumName, NumberOfMat.ches) as
select StadiumName, count (•)
from Match
where Country 1 = 'Brazil' or Country2 = 'Brazil'
group by StadiumName
select City from Stadium
where Name in {select StadlumName
 from BrazilStad
 where NunberOfMatches = {select max(NumberOfMatches)
 from BrasilStad))

general view:

create view Teams(StadiumName, Team,. NumberOfMatches) as
select StadiumName, Country, count (•)
from Match, Nationality
where (Country1 = Country or Country2 = Country)
group by StadiumName, Country
select City
from Stadium
where Name in (select StadiumName
 from Teams where Team = 'Brazil'
 and NumberOfMatcbes = (select max(NumberOMatcbes)
 where Team = 'Brazil'))

2. Given the following relational schema:

MOTORCYCLE(Number, Make, Nationality, Tax)
OWNER(Name, Number)
write the following queries in SQL:

(a) Find the names of the owners of only Japanese motorcycles of at least two different makes

SOLUTIONS:

i. First solution:

select Name
from Owner join Motorcycle on Owner.Number = Motorcycle.Number
where Name not in (select Name
 from Owner join Motorcycle on Owner. Number = Motorcycle.Number
 where Nationality <> 'Japanese')
 group by Name
 having count(distinct Make) >= 2

ii. Second solution:

select P1.Name
from Owner P1, Motorcycle M1, Owner P2, Motorcycle M2
where P1.Name not in (select Name
 from Owner join Motorcycle on
 Owner.Number = Motorcycle.Number
 where Nationality <> 'Japanese')
 and P1.Number = M1.Number and P2.Number = M2.Number
 and P1.Name= P2.Name and M1.Make <> M2.Make

(b) Formulate the query in relational algebra. solution:
(Name((OWNER ((MOTORCYCLE)
((Make(Make2 (Name=Name2
((Name2(Name(OWNER)(((Make2(Make (MOTORCYCLE))) –
(Name(OWNER (((Nationality(’Japanese’MOTORCYCLE)

(c) For each owner, highlight the tax he or she must pay for all the motorcycles owned, taking into account that if there is more than one owner for a motorcycle, the total tax will be equally divided among the owners.

SOLUTION:

create view IndTax(Number, Tax) as
select Number, Tax/count(*)
from Motorcycle join Owner on Motorcycle. Number = Owner.Number
group by Number, Tax
select Name, sum(Tax)
from Owner join IndTax on Owner.Number = IndTax.Number
group by Name

4.8 Bibliography

SQL was first proposed by Chamberlin et al. [21] and [22]. The official description of standard SQL can be obtained from the international standards organization ISO. These documents are, indeed, very expensive and not easy to read. However, there are a great number of books on SQL-2, including those by Cannan and Otten [12]. Date and Darwen [34], and Melton and Simon [61]. Eisenberg and Melton [36] discuss the standardization process in general and with specific reference to the database field. Melton [60] gives an overview of the main issues in SQL-3.

Most of the manuals accompanying commercial relational systems are very detailed and can provide a useful reference point. The manual of each system is also essential to know which SQL features have been implemented in that particular system.

4.9 Exercises

Exercise 4.1 Order the following domains according to the maximum value that can be represented, taking integer to have 32 bits for its representation and smallint 16 bit: numeric(12,4), decimal(10), decimal(9), integer, smallint, decimal(6,1)

Exercise 4.2 Define an attribute that allows the representation of strings of maximum length of 256 characters, on which no null values are admitted and with an 'unknown' default value.

Exercise 4.3 Give the SQL definitions of the tables

CROSSCOUNTRYSKlER(Name, Country, Age)
COMPETES(SkierName, ContestName, Placement)
CONTEST(Name, Place, Country. Length)

showing particularly the foreign key constraints of the COMPETES table.

Exercise 4.4 Give the SQL definitions of the tables

AUTHOR(FirstName, Surname, DateofBirth, Nationality)
BOOK(BookTitle. AuthorFirstName, AuthorSumame, Language)

For the foreign key constraint specify a cascade policy on deletions and set null on updates.

Exercise 4.5 Given the schema in Exercise 4.4, explain what can happen as a result of the execution of the following update commands:

delete from Author
 where Surname = 'Russell'
update Book set FirstName = 'Umberto'
 where Surname = 'Eco'
insert into Author (FirstName, Surname) values('Isaac', 'Asimov')
update Author set FirstName = 'Emile'
 where Surname = 'Zola'

Exercise 4.6 Given the definitions:

create domain Domain1 integer default 10
create table Table1 (Attribute1 Domain1 default 5)

indicate what will happen as a result of these commands:

alter table Table1 alter column Attribute1 drop default
alter domain Domain1 drop default
drop domain Domain1

Exercise 4.7 Given the following schema

AIRPORT(City, Country. NumberOfRunways)
FLIGHT(FlightID, Day. DepartCity, DepartTime, ArrCity, ArrTime, PlaneType)
 PLANE(PlaneType, NumberOfPassengers, Payload)

write the SQL queries with which we can find out:

9. The cities with airports for which the number of runways is nut known.

10. The arrival and departure countries of flight AZ 274

11. The types of aircraft used for flights leaving Boston

12. The types of aircraft and the corresponding number of passengers for the types of aircraft used for flights leaving Boston. If the description of the aircraft is not available, give only the type.

13. The cities from which international flights leave.

14. The cities from which direct flights to Sydney leave, in alphabetical order.

15. The number of international flights that leave Paris on Thursdays.

16. The number of international flights that leave Canadian cities each week (to be done in two ways, one showing the airports without international flights and one not.)

17. The French cities from which more than twenty direct flights to Germany leave each week.

18. The Belgian airports that have only domestic flights. Show this query in four ways: (i) with set-theory operators, (ii) with a nested query with the not in operator, (iii) with a nested query with the not exists operator, (iv) with the outer join and the count operator. Express the query also in relational algebra.

19. The cities served by the type of aircraft able to carry the maximum number of passengers.

20. The maximum number of passengers who could arrive in a Greek airport from Norway on Thursday. If there are several flights, the total number of passengers must be found.

Exercise 4.8 Given the following schema:

CD(CDNumber, Title, Year, Price)
TRACK(CDNumber, PerformanceCode,. TrackNo)
RECCORDING(Performance, SongTitle, Year)
COMPOSER(CompName, SongTitle)
SINGER(SingerName, PerformanceCode)

write SQL queries that will find:

21. The people who have written and sung a particular song and whose names begin with *D*.

22. The titles of the CDs that contain songs of which the year of recording is not known.

23. The tracks on the CDs with the serial number 78574. Provide these in numerical order, indicating the performers for the tracks having a singer.

24. The exclusive composers and singers. That is, composers who have never recorded a song and singers who have never written a song.

25. The singers on the CD that contains the largest number of songs.

26. The CDs on which all the songs are by a single singer and on which at least three recordings are from years preceding the release year of the CD

27. .The singers who have never recorded a song as soloists.

28. The singers who have never made a CD in which they appear as the only the singers who have always recorded songs as soloists.

Exercise 4.9 Give a sequence of update commands that alter the attribute Salary in the EMPLOYEE table, increasing by 10% the salaries below 30 thousand and decreasing by 5% those above 30 thousand.

Exercise 4.10 Define on the EMPLOYEE table the constraint that the Administration department has fewer than 100 employees, with an average salary higher than 40 thousand.

Exercise 4.11 Define at schema level the constraint that the maximum salary of the employees of departments based in London is less than the salary of all the employees in the Directors department.

Exercise 4.12 Define a view that shows for each department the average value of the salaries higher than the average.

Exercise 4.13 Using the definition of a view, allow the user 'Fred' to access the contents of EMPLOYEE, excluding the Salary attribute.

Exercise 4.14 Describe the effect of the following instructions: which authorizations are present after each instruction? (Each row is preceded by the name of the person who issues the command.)

Stefano: grant select on Table1 to Paolo, Riccardo with grant option
Paolo: grant select on Table1 to Piero
Riccardo: grant select on Table1 to Piero with grant option
Stefano: revoke select on Table1 from Paolo caacade
Piero: grant select on Table1 to Paolo
Stefano: revoke select on Table1 from Riccardo cascade

Table_Name�
Column_Name�
Ordinal_Position�
Column_Default�
Is_Nullable�
�
Columns�
Tabte_Name�
1�
NULL�
N�
�
Columns�
Coiumn_Name�
2�
NULL�
N�
�
Columns�
Ordinal Position�
3�
NULL�
N�
�
Columns�
Column Default�
4�
NULL�
Y�
�
Columns�
ls_Nullable�
5�
Y�
N�
�

Figure 4.2 The reflexive description of COLUMNS.

Table_Name�
Column_Name�
Ordlnal_Position�
Column_Defautt�
Is_Nullable�
�
Employee�
RegNo�
1�
NULL�
N�
�
Employee�
FirstName�
2�
NULL�
N�
�
Employee�
Surname�
3�
NULL�
N�
�
Employee�
Dept�
4�
NULL�
Y�
�
Employee�
Salary�
5�
0�
Y�
�
Employee�
City�
6�
NULL�
Y�
�
Department�
DeptName�
1�
NULL�
N�
�
Department�
Address�
2�
NULL�
Y�
�
Department�
City�
3�
NULL�
Y�
�

Figure 4. 1 Part of the contents of the view columns of the data dictionary.

FirstName�
Surname�
Dept�
Office�
Salary�
City�
�
Mary�
Brown�
Administration�
10�
45�
London�
�
Charles�
White�
Production�
20�
36�
Toulouse�
�
Gus�
Green�
Administration�
20�
40�
Oxford�
�
Jackson�
Neri�
Distribution�
16�
45�
Dover�
�
Charles�
Brown�
Planning�
14�
80�
London�
�
Laurence�
Chen�
Planning�
7�
73�
Worthing�
�
Pauline�
Bradshaw�
Administration�
7S�
40�
Brighton�
�
Alice�
Jackson�
Production�
20�
46�
Toulouse�
�

Figure 4.3 Contents of the EMPLOYEE table

Remuneration�
�
45�
�
80�
�

Figure 4.4 Result of Query 1

FirstName�
Surname�
Dept�
Office�
Salary�
City�
�
Mary�
Brown�
Administration�
10�
45�
London�
�
Charles�
Brown�
Planning�
14�
80�
London�
�

Figure 4.5 Result of Query 2

MonthlySalary�
�
3.00�
�

Figure 4.6 Result of Query 3

DEPARTMENT

DeptName�
Address�
City�
�
Administration�
Bond Street�
London�
�
Production�
Rue Victor Hugo�
Toulouse�
�
Distribution�
Pond Road�
Brighton�
�
Planning�
Bond Street�
London�
�
Research�
Sunset Street�
San Jose�
�

Figure 4.7 Contents of the DEPARTMENT table

FirstName�
Surname�
City�
�
Mary�
Brown�
London�
�
Charles�
White�
Toulouse�
�
Gus�
Green�
London�
�
Jackson�
Neri�
Brighton�
�
Charles�
Brown�
London�
�
Laurence�
Chen�
London�
�
Pauline�
Bradshaw�
London�
�
Alice�
Jackson�
Toulouse�
�

Figure 4.8 Result of Query 4

Figure 4.9 Result of Query 6.

FirstName�
Surname�
�
Gus�
Green�
�

FirstName�
Surname�
�
Mary�
Brown�
�
Charles�
White�
�
Gus�
Green�
�
Pauline�
Bradshaw�
�
Alice�
Jackson�
�

Figure 4.10 Result of Query 7

FirstName�
�
Mary �
�

Figure 4.11 Result of Query 8

FirstName�
Surname�
Dept�
Office�
Salary�
City�
�
Mary�
Brown�
Administration�
10�
45�
London�
�
Charles�
Brown�
Planning�
14�
80�
London�
�
Gus�
Green�
Administration�
20�
40�
Oxford�
�

Figure 4.12 Result of Query 9

TaxCode�
FirstName�
Surname�
City�
�
BRWMRA55B21T234J�
Mary�
Brown�
Verona�
�
LBLCLR69T30H74SZ�
Charles�
Leblanc�
Paris�
�
BRWGNN41A31B344C�
Giovanni�
Brown�
Verona�
�
BRWWT75C12F205V�
Pietro�
Brown�
Milan�
�

Figure 4.13 The PERSON table

City�
�
Verona�
�
Verona�
�
Milan�
�

City�
�
Verona�
�
Milan�
�

Figure 4.14 The results of Query 10 and Query 11

FirstName�
Surname�
DriverID�
�
Mary�
Brown�
VR 2030020Y�
�
Charles�
White�
PZ 1012436B�
�
Mareo�
Neri�
AP4544442R�
�

DRIVER

AUTOMOBILE

CarRegNo�
Make�
Model �
DriverID�
�
ABC 123�
BMW�
323�
VR 2030020Y�
�
DEF 456�
BMW�
Z3�
VR 2030020Y�
�
GHI 789�
Lancia�
Delta�
PZ 1012436B�
�
BBB 421�
BMW�
316�
Ml 2020030U�
�

Figure 4.15 DRIVER and AUTOMOBILE tables

FirstName�
Surname�
DriverlD�
CarRegNo�
Make�
Model�
�
Mary�
Brown�
VR 2030020Y�
ABC 123�
BMW�
323�
�
Mary�
Brown�
VR 2030020Y�
DEF 456�
BMW�
Z3�
�
Charles�
White�
PZ 1012436B�
GHI 789�
Lancia�
Delta�
�
Mareo�
Neri�
AP 4544442R�
NULL�
NULL�
NULL�
�

Figure 4.16 Result of Query 13.

Firstname�
Surname�
DrtverID�
CarRegNo�
Make�
Model�
�
Mary�
Brown�
VR 2030020Y�
ABC 123�
BMW�
323�
�
Mary�
Brown�
VR 2030020Y�
DEF 456�
BMW�
Z3�
�
Charles�
White�
PZ 1012436B�
GHI 789�
Lancia�
Delta�
�
Mareo�
Neri�
AP 4544442R�
NULL�
NULL�
NULL�
�
NULL�
NULL�
NULL�
BBB421�
BMW�
316�
�

Figure 4.17 Result of Query 14

�EMBED Word.Picture.8���

CarfRegNo�
Mate�
Model �
DnverlD�
�
GHI 789�
Lancia�
Delta�
PZ 1012436B�
�
DEF 456�
BMW�
Z3�
VR 2030020Y�
�
ABC 123�
BMW�
323�
VR 2030020Y�
�
BBB 421�
BMW�
316�
Ml 20220030U�
�

Figure 4.19 Result of Query 19

FirstName�
Surname�
Dept�
Office�
Salary�
City�
�
Mary�
Brown�
Administration�
10�
45�
London�
�
Charles�
White�
Production�
20�
36�
Toulouse�
�
Gus�
Green�
Administration�
20�
40�
Oxford�
�
Jackson�
Neri�
Distribution�
16 �
45�
Dover�
�
Charles�
Brown�
Planning�
14�
60�
London�
�
Laurence�
Chen�
Planning�
7�
73�
Worthing�
�
Pauline�
Bradshaw�
Administration�
75�
40�
Brighton�
�
Alice�
Jackson�
Production�
20�
46�
Toulouse�
�

EMPLOYEE

Figure 4.20 Contents of the EMPLOYEE table.

Dept�
Salary�
�
Administration�
125�
�
Production�
82�
�
Distribution�
45�
�
Planning�
153�
�

Figure 4.23 Result of Query 27.

Dept �
Salary�
�
Administration �
45�
�
Production�
36�
�
Administration�
40�
�
Distribution�
45�
�
Planning�
80�
�
Planning�
73�
�
Administration�
40�
�
Production�
46�
�

Figure 4.21 Projection on the attributes Dept and Salary of the EMPLOYEE table

Dept�
Salary�
�
Administration�
45�
�
Administration�
40�
�
Administration�
40�
�
Distribution�
45�
�
Planning�
80�
�
Planning�
73�
�
Production�
36�
�
Production�
46�
�

Figure 4.22 Regrouping according to the value of the Dept attribute

Dept�
�
Administration�
�
Planning�
�

Figure 4.24 Result of Query 31

Name�
�
Mary�
�
Charles�
�
Gus�
�
Jackson�
�
Laurence�
�
Pauline�
�
Alice�
�
Brown�
�
While�
�
Green�
�
Neri�
�
Chen�
�
Bradshaw�
�

Figure 4.25 Result of Query 33

Name�
�
Jackson�
�

Figure 4.27 Result of Query 35.

Name�
�
Mary�
�
Charles�
�
Gus�
�
Laurence�
�
Pauline�
�
Alice�
�

Figure 4.28 Result of Query 36.

Name�
�
Charles�
�
Jackson�
�
Charles�
�
Laurence�
�
Alice�
�
White�
�
Neri�
�
Brown�
�
Chen�
�
Jackson�
�

Figure 4.26 Result of Query 34.

� There are two different pronunciations of this acronym; the first enunciates the letters separately: S-Q-L, whereas the second pronounces it like the word 'sequel' Sequel is the name by which the language was originally known

� In this chapter we use the term table in place of relation and row in place of tuple, in keeping with SQL terms; in SQL. attributes are generally referred to as columns but in this case we prefer to adhere to classical relational terminology.

� The term is derived from electrical engineering, which requires the entry and exit impedances of circuits connected to each other to be as similar as possible

4.10

_1087223971.doc
[image: image1.png]

�

Figure 4.18 Description of the execution of Query 17.

