Chapter 8
Normalization

Normalization

[image: image1.png]

In this chapter we will study some properties, known as normal forms, which we can use to evaluate the quality of a relational database. We will see that when a relation does not satisfy a normal form, then it presents redundancies and produces undesirable behavior during update operations. This principle can be used to carry out quality analysis on relational databases and so constitutes a useful tool for database design. For the schemas that do not satisfy a normal form we can apply a procedure known as normalization. Normalization allows the non-normalized schemas to be transformed into new schemas for which the satisfaction of a normal form is guaranteed.

There are two important points to be clarified. First, the design techniques seen in the preceding chapters usually allow us to obtain schemas that satisfy a normal form. In this framework, normalization theory constitutes a useful verification tool, which indicates amendments, but cannot substitute for the wider range of analysis and design techniques described in Chapter 5. Second, normalization theory has been developed in the context of the relational model and for this reason it provides means and techniques for the analysis of the outcomes of logical design. We will see, however, that the same techniques can be used with minor variations, on Entity-Relationship schemas. Normalization can also be used earlier, for example, during the quality analysis step of the conceptual design.

We will deal with this subject in stages, first discussing the problems (redundancies and anomalies) that can be verified in a relational schema, and then deriving systematic techniques for analysis and normalization. We will discuss later the same principles with reference to the Entity-Relationship model.

8.1 Redundancies and anomalies
[image: image2.png](O ProductName

L0 SupplierCode

We will use an example to illustrate the basic principles. Consider the relation in Figure 8.1. The key is made up of the attributes Employee and Project. We can also easily verify that the relation satisfies the following properties:

1. the salary of each employee is unique and depends only on the employee; it is independent of the projects on which the employee is working;

2. the budget of each project is unique and depends only on the project; it is independent of the employees who are working on it.

These facts have certain consequences for the contents of the relation and for the operations that can be carried out on it. We will limit our discussion to the first property, leaving the analysis of the second as an exercise.

· The value of the salary of each employee is repeated in all the tuples relating to it: therefore there is a redundancy; if, for example, an employee participates in 20 projects, his or her salary will be repeated 30 times.

· If the salary of an employee changes, we have to modify the value in all the corresponding tuples. This inconvenient process, which makes it necessary to carry out many modifications simultaneously, is known as update anomaly.
· If an employee stops working on all the projects but does not leave the company, all the corresponding tuples are deleted and so, even the basic information, name and salary, which is not related to projects, is lost. This would require us to keep a tuple with a null value for the attribute Project, but since Project is part of the key, this is not allowed, as we saw in Chapter 2. This problem is known as the deletion anomaly.
· Similarly, if we have information on a new employee, we cannot insert it until the employee is assigned to a project. This is known as the insertion anomaly.
An intuitive explanation for the presence of these undesirable phenomena can be as follows. We have used a single relation to represent items of information of different types. In particular, in this relation the following are represented: employees with their salaries, projects with their budgets and participation of the employees in the projects with their functions.

In general, we can arrive at the following conclusions, which highlight the defects presented by a relation whose tuples each include various items of information, representing independent real-world concepts.

· Items of information often need to be repeated, that is, to appear in different tuples.

· If some information is repeated redundantly, the updating must be repeated for each occurrence of the repeated data. Now, the relational languages, such as SQL, all allow the specification of multiple updates using a single command, However, this resolves the problem only from the point of view of the programmer and not from that of the system. The reason is that all the tuples involved in the update must be modified and thus it is necessary to access each one of them physically.

· Problems can occur with the deletion of a tuple in the case where just one item of information it expresses is no longer valid. The cancellation can cause the deletion of all the information in question, even the portion that is still valid.

· The insertion of a single item of information in a relation is not possible without values for the entire set of items making up a complete tuple (or at least its primary key).

8.2 Functional dependencies
To systematically study the principles introduced informally above, it is necessary to use a specific notion, functional dependency. This is a particular integrity constraint for the relational model, which, as the name suggests, describes functional relationships among the attributes of a relation.

Let us look again at the relation in Figure 8.1. We have seen that the salary of each employee is unique and thus each time a certain employee appears in a tuple, the value of his or her salary always remains the same. We can thus say that the value of the attribute Salary functionally depends on the value of the Employee attribute. That is, a function exists that associates with each Employee value in the relation, a single value for the Salary attribute. A similar argument can be made for the relationship between the attributes Project and Budget because the value of the budget functionally depends on the value of the project.

We can formalize this principle as follows. Given a relation r on a schema R(X) and two non-empty subsets Y and Z of the attributes X. we say that there is a functional dependency on r between Y and Z, if, for each pair of tuples t1 and t2 of r having the same values on the attributes Y, t1 and t2 also have the same values of the Z attributes.

A functional dependency between the attributes Y and Z is generally indicated by the notation Y → Z and, as with other integrity constraints, is associated with a schema: a valid relation on that schema has to satisfy this functional dependency. Given a functional dependency Y → Z., we will call Y the left hand side and that Z the right hand side of the dependency. Returning to our example, we can thus say that on the relation in Figure 8.1 there are the functional dependencies:
Employee → Salary
Project → Budget
There are some observations to be made on functional dependencies. The first is as follows: based on the given definition, we can state that, in our relation, this functional dependency is also satisfied:

Employee Project → Project
That is, two tuples with the same values on each of the attributes Employee and Project have the same value on the attribute Project, which is one of them. This is a 'trivial' functional dependency because it asserts an obvious property of the relation. Functional dependencies should instead be used to describe significant properties of the application that we are representing. We then say that a functional dependency Y → Z is non- trivial if no attribute in Z appears among the attributes of Y. Note that a 'hybrid' functional dependency of the type

Project → Project Budget
which contains a trivial property (a project depends on itself), can be made non-trivial by deleting from the right hand side of the dependency, all the attributes that also appear in the left hand side. It is easy, in fact, to demonstrate that if the functional dependency Y → Z is valid, then the functional dependency Y → W is also valid, where W is a subset of Z. From here on, we will refer only to functional dependencies that are non-trivial, often omitting the adjective for brevity.

A second observation on functional dependencies concerns their link with the key constraint. If we take a key K of a relation r. we can easily verify that there is a functional dependency between K and any other attribute of r. This is because, by the definition of key constraint, there cannot exist two tuples with the same values on K. Referring to our example we have said that the attributes Employee and Project form a key. We can then affirm that, for example, the functional dependency Employee Project → Function is valid. In particular, there will be a functional dependency between the key of a relation and all the other attributes of the schema of the relation. In our case we have:

Employee Protect → Salary Budget Function
We can therefore conclude by saying that the functional dependency constraint generalizes the key constraint. More precisely, we can say that a functional dependency Y → Z on a schema R{X) degenerates into the key constraint if the union of Y and Z is equal to X. In this case, Y is a (super)key for the R{X) schema

8.3 Boyce-Codd normal form
8.3.1 Definition of Boyce-Codd normal form
In this section, we will formalize the ideas illustrated in Section 8.1, in the light of what we have said on functional dependencies. Let us start by observing that. in our example, the two properties causing anomalies correspond exactly to attributes involved in functional dependencies:

· the property 'the salary of each employee is unique and depends only on the employee, independently of the project on which he or she is working" can be formalized by means of the functional dependency Employee → Salary;

· the properly 'the budget of each project is unique and depends only on the project, independently of the employees who are working on it corresponds to the functional dependency Project → Budget.
Furthermore, it is appropriate to note that the Function attribute indicates, for each tuple, the role played by the employee in the project. This role is unique, for each employee-project pair. We can model this property too using a functional dependency:

· The property 'in each project, each of the employees involved can carry out only one function' corresponds to the functional dependency Employee Project → Function. As we have mentioned in the previous section, this is also a consequence of the fact that the attributes Employee and Project form the key of the relation.

We saw in Section 8.1 how the first two properties (and thus the corresponding functional dependencies) generate undesirable redundancies and anomalies. The third dependency is different. It never generates redundancies because, having Employee and Project as a key, the relation cannot contain two tuples with the same values of these attributes (and thus of the Function attribute). Also, from a conceptual point of view, we can say that it cannot generate anomalies, because each employee has a salary (and one only) and each project has a budget (and one only), and thus for each employee-project pair we can have unique values for all the other attributes of the relation. In some cases, such values might not be available. In these cases, since they are not part of the key, we would simply replace them with null values without any problem. We can thus conclude that the dependencies:

Employe → Salary
Project → Budget
cause anomalies, whereas the dependency

Employee Project → Function
does not. The difference, as we have mentioned, is that Employee Project is a superkey of the relation. All the reasoning, which we have developed with reference to this specific example, is more general. Indeed: redundancies and anomalies are caused by the functional dependencies X → Y that allow the presence of many equal tuples on the attributes in X. That is, from the functional dependencies X → Y such that X does not contain a key.

We will formalize this idea by introducing the notion of Boyce-Codd normal form (BCNF), which takes the name from its inventors. A relation r is in Boyce Codd normal form if for every (non-trivial) functional dependency X → Y defined on it, X contains a key K of r. That is, X is a superkey for r.

Anomalies and redundancies, as discussed above, do not appear in databases with relations in Boyce-Codd normal form, because the independent pieces of information are separate, one per relation.

8.3.2 Decomposition into Boyce-Codd normal form
Given a relation that does not satisfy Boyce-Codd normal form, we can often replace it with one or more normalized relations using a process called normalization. This process is based on a simple criterion: if a relation represents many real-world concepts, then it is decomposed into smaller relations, one for each concept.

[image: image3.png](11,

ON)

@ SupplerCode

"0 Name

Let us show the normalization process by means of an example. We can eliminate redundancies and anomalies for the relation in Figure 8.1 if we replace it with the three relations in Figure 8.2, obtained by projections on the sets of attributes corresponding respectively to the three items of information mentioned above. The three relations are in Boyce-Codd normal form. Note that we have constructed three relations so that each dependency corresponds to a different relation, the key of which is actually the left hand side of the same dependency. In this way, the satisfaction of the Boyce Codd normal form is guaranteed by the definition of this normal form itself.

In the example, the separation of the dependencies (and thus of the properties represented by them) is facilitated by the structure of the dependency itself, 'naturally' separated and independent of the others. In many cases, the decomposition can be carried out by producing as many relations as there are functional dependencies (or rather, the functional dependencies with different left hand sides). Unfortunately, some dependencies are found to be complex: it might be unnecessary (or impossible) to base the decomposition on all the dependencies and it can be difficult to identify the ones on which we must base the decomposition. We will clarify this point by looking at a simple example.

It is easy to verify that the relation in Figure 8.3 satisfies the dependencies Employee → Category and Category → Salary. By proceeding in the way described above, we could easily obtain a database with two relations, both in Boyce-Codd normal form. On the other hand, for the same relation, we could have identified both the functional dependencies Category → Salary and Employee → Category Salary (rather than Employee → Category). Note that this dependency describes the situation with more or less the same accuracy. In this case however, we would have had no hints on how to generate decomposition into Boyce-Codd normal form, because obviously the dependency Employee → Category Salary covers all the attributes and thus does not suggest any decomposed relation. This simple example shows that the identification of dependencies can cause difficulties with decomposition.
We can imagine what could happen when the relation has many attributes and several functional dependencies are defined on it.

[image: image4.png]©.1)

A complete study of normalization would require, as a prerequisite, a detailed examination of the properties of functional dependency. The complete development of these concepts goes beyond the scope of this book. Given the importance of the subject, however, we intend to give an informal description of some of the most important aspects.

It should be noted, moreover, that we study normal forms mainly as auxiliary quality control tools for relations and not as a design technique. The design techniques discussed in preceding chapters are intended for the generation of relations (in the logical design phase) based on entities and relationships that appear in the conceptual schema (produced during the conceptual design phase). The conceptual design phase serves to identify the fundamental concepts of the application to model, separating them into distinct entities or relationships. Since the translation is then carried out considering each entity and each relationship separately, it is evident that if the conceptual design is carried out correctly, the relational schema produced during the logical design phase will be already normalized.

In this context, normalization theory is in any case useful as a verification tool for the products of both conceptual and logical design. We will re-examine this subject in more detail in Section 8.6.
8.4 Decomposition properties
In this section, we examine the concept of decomposition in more detail. We explain how not all decompositions are desirable and identify some essential properties that must be satisfied by a 'good' decomposition.

8.4.1 Lossless decomposition
[image: image5.png](U}

In order to discuss the first property, let us examine the relation in Figure 8.4. This relation satisfies the functional dependencies:
Employee → Brarnch
Project → Branch
that specify the fact that each employee works at a single branch and that each project is developed at a single branch. Observe that each employee can work on more than one project even if, based on functional dependencies, they must all be projects allocated to the branch to which he or she belongs.
Proceeding in the same way as before, that is, separating on the basis of dependencies we will find it suitable to decompose the relation into two parts:

· a relation on the attributes Employee and Branch corresponding to the dependency Employee → Branch,
· a second relation on the attributes Project and Branch, corresponding to the functional dependency Project → Branch.
The instance in Figure 8.4 would be decomposed into the two relations in Figure 8.5 by projecting on the involved attributes.

[image: image6.png]1.1}

Let us examine the two relations in detail. In particular, consider how it would be possible to reconstruct information on the participation of the employees in the projects. The only possibility is to use the attribute Branch, which is the only attribute common to the two relations: we can thus link an employee to a project if the project is developed at the branch where the employee works. Unfortunately, however, in this case we are not able to reconstruct exactly the information in the original relation: for example the employee called Green works in Birmingham and the Saturn project is being developed in Birmingham, but in fact Green does not actually work on that project.
[image: image7.png]

We can generalize the observation by noting that the reconstruction of the original relation must be carried out through a natural join of the two projections. Unfortunately, the natural join of the two relations in Figure 8.5 produces the relation in Figure 8.6, which is different from the relation in Figure 8.4. The relation in Figure 8.6 contains all the tuples of the original relation (Figure 8.4) as well as other tuples (the last two in the table). The situation in the example corresponds to the general situation: given a relation r on a set of attributes X, if X1 and X2 are two subsets of X the union of which is equal to X itself, then the join of the two relations obtained by projecting r on X1 and X2, respectively, is a relation that contains all the tuples of r, plus possible others, which we can call 'spurious'. Let us say that the decomposition of r on X1 and X2 is lossless if the join of the projections of r on X1 and X2 is equal to r itself (that is. not containing spurious tuples). It is clearly desirable, or rather an indispensable requirement, that a decomposition carried out for the purpose of normalization is lossless.

We can identify a condition that guarantees the lossless decomposition of a relation, as follows. Let r be a relation on X and let X1 and X2 be subsets of X such that X1 (X2= X. Furthermore, let X0 = X1 r\ X2. If r satisfies the functional dependency X0 → X1 or the functional dependency X0 → X2, then the decomposition of r on X1 and X2 is lossless.

In other words, we can say that r has a lossless decomposition on two relations if the set of attributes common to the two relations is a key for at least one of the decomposed relations. In the example, we can see that the intersection of the sets of attributes on which we have carried out the two projections is made up of the Branch attribute, which is not the left hand side of any functional dependency.

We can justify the condition in the following manner with reference to a relation r on the attributes ABC and to its projections on AB and AC. Let us suppose that r satisfies A → C. Then. A is key for the projection of r on AC and thus in this there are not two different tuples with the same values of A. The join constructs tuples based on the tuples in the two projections. Let us consider a generic tuple t = (a, b, c) in the result of the join. We show that t belongs to r, so proving the equality of the two relations: t is obtained from t1=(a, b) in the projection of r on AB. and t2 = (a, c) in the projection of r on AC. Thus, by definition of the projection operator, there must be two tuples in r: t1' with values a and b on AB, and t2' with values a and c on AC. Since r satisfies A → C. there is a single value of C in r associated with the value a on A: given that (a. c) appears in the projection, this value is exactly c. Thus the value of t1' on C is c and thus t1' (which belongs to r) has values a, b and c, and thus coincides with t, which therefore belongs to r, as we intended to show.

It is appropriate to note briefly how the condition stated is sufficient but not strictly necessary to ensure a lossless decomposition: there are relations that satisfy neither of the two dependencies, but at the same time they have a lossless decomposition. For example, the relation in Figure 8.6 (obtained as the join of the projections) has a lossless decomposition on the two sets Employee Branch and Project Branch. On the other hand, the condition given ensures that all the relations that satisfy a given set of dependencies have a lossless decomposition, and this is a useful result: each time we decompose a relation into two parts, if the set of common attributes is a key for one of the two relations, then all the valid instances of the relation have a lossless decomposition.

8.4.2 Preservation of dependencies
To introduce the second property, we can re-examine the relation in Figure 8.4. We still wish to remove the anomalies, so we could think about exploiting only the dependency Employee → Branch, in order to obtain a lossless decomposition. We then have two relations, one on the attributes Employee and Branch and the other on the attributes Employee and Project. The instance in Figure 8.4 would be thus decomposed into the relations in Figure 8.7.
[image: image8.png]BrancH |

Dvision

The join of the two relations in Figure 8.7 produces the relation in Figure 8.4, for which we can say that the original relation has a lossless decomposition on Employee Branch and Employee Project. This is confirmed by the fact that Employee is the key for the first relation. Unfortunately, the decomposition in Figure 8.7 produces another problem, as follows. Suppose we wish to insert a new tuple that specifies the participation of the employee named Armstrong, who works in Birmingham, on the Mars project. In the original relation, that is, the one in Figure 8.4, an update of this kind would be immediately identified as illegal, because it would cause a violation of the Project → Branch dependency. On the decomposed relations however, it is not possible to reveal any violation of dependency. On the relation over Employee and Project, it is actually not possible to define any functional dependency and thus there can be no violations to show, while the tuple with the values Armstrong and Birmingham satisfies the dependency Employee → Branch. We can therefore note how it is not possible to carry out any verification on the dependency Project → Branch, because the two attributes Project and Branch have been separated: one into one relation and one into the other.

We can conclude that, in each decomposition, each of the functional dependencies of the original schema should involve attributes that appear all together in one of the decomposed schemas. In this way, it is possible to ensure, on the decomposed schema, the satisfaction of the same constraints as the original schema. We can say that a decomposition that satisfies this property preserves the dependencies of the original schema

8.4.3 Qualities of decompositions
To summarize the points discussed above, we can state that decompositions should always satisfy the properties of lossless decomposition and dependency preservation.
· Lossless decomposition ensures that the information in the original relation can be accurately reconstructed, that is, reconstructed without spurious information, based on the information represented in the decomposed relations. In this case, by querying the decomposed relations, we obtain the same results that we would obtain by querying the original relation.

· Dependency preservation ensures that the decomposed relations have the same capacity to represent the integrity constraints as the original relations and thus to reveal illegal updates: each allowed update (respectively, illegal) on the original relation corresponds to an allowed update (respectively, illegal) on the decomposed relations. Obviously, we can have further updates on the single decomposed relations, which have no counterpart in the original relation. Such updates are impossible on non-normalized relations where they are sources of anomalies.

As a result, from here on we will consider only decompositions that satisfy these two properties. Given a schema that violates a normal form, the normalization activity is thus aimed at obtaining a decomposition that is lossless, preserves the dependencies and contains relations in normal form. Note how the decomposition discussed in Section 8.1 shows all three qualities.

8.5 Third normal form
8.5.1 Definition of third normal form
[image: image9.png]

In most cases, the aim of obtaining a good decomposition into Boyce-Codd normal form can be achieved. Sometimes, however, this is not possible, as we can see from an example. Look at the relation in Figure 8.8.
We can assume that the following dependencies are defined

· Manager → Branch; each manager works at a particular branch;

· Project Branch → Manager; each project has more managers who are responsible for it, but in different branches, and each manager can be responsible for more than one project; however, for each branch, a project has only one manager responsible for it.

The relation is not in Boyce-Codd normal form because the left hand side of the Manager → Branch dependency is not a superkey. At the same time we can note how no good decomposition of this relation is possible; the dependency Project Branch → Manager involves all the attributes and thus no decomposition is able to preserve it. The example shows us that schemas exist that violate Boyce-Codd normal form and for which there is no decomposition that preserves the dependencies. We can therefore state that sometimes. 'Boyce-Codd normal form cannot be achieved'. In such cases, we can however establish a less restrictive condition, which allows situations such as the one described above, but does not allow further sources of redundancy and anomaly.

This condition defines a new normal form: we will say that a relation r is in third normal form if, for each (non-trivial) functional dependency X → Y defined on it, at least one of the following is verified:

· X contains a key K of r;.
· each attribute in Y is contained in at least one key of r.
Returning to our example, we can easily verify that, even if the schema does not satisfy the Boyce-Codd normal form, it satisfies the third normal form. The Project Branch → Manager dependency has as its left hand side a key for the relation, while Manager → Branch has a unique attribute for the right hand side, which is part of the Project Branch key. Note that the relations show a form of redundancy: each time a manager appears in a tuple, the branch for which he or she works is repeated. This redundancy is ‘tolerated’ however, by the third normal form, because intuitively, a decomposition that eliminated such redundancy and at the same time preserved all the dependencies would not be possible.

The third normal form is less restrictive than the Boyce-Codd normal form and for this reason does not offer the same guarantees of quality for a relation; it has the advantage however, of always being achievable.

The name of this normal form suggests the existence of other normal forms, which we will deal with briefly. The first normal form simply establishes a condition that is at the basis of the relational model itself: the attributes of a relation are defined on atomic values and not on complex values, whether sets or relations. We will see in Chapter 11 how this constraint is relaxed in other database models. The second normal form is a weak variation of the third, which allows functional dependencies such as that between Category and Salary of the relation in Figure 8.3. Note that this dependency satisfies neither of the conditions of the third normal form. There are indeed other normal forms that refer to other integrity constraints. None of these normal forms is used significantly in current applications since the third normal form and the Boyce-Codd normal form already provide the right compromise between simplicity and the quality of results.

8.5.2 Decomposition into third normal form
Decomposition into third normal form can proceed as suggested for the Boyce-Codd normal form. A relation that does not satisfy the third normal form is decomposed into relations obtained by projections on the attributes corresponding to the functional dependencies. The only condition to guarantee in this process is of always maintaining a relation that contains a key to the original relation. We can see this by referring to the relation in Figure 8.9, for which we have a single functional dependency, Employee → Salary.

A decomposition in the relation on the attributes Employee Salary and in another on the sole attribute Project would violate the property of lossless decomposition, essentially because neither of the two relations contains a key for the original relation. To guarantee this property, we must define the second relation on the attributes Employee Project, which actually forms a key for the original relation We insist however on the fact that the success of a decomposition depends for the most part on the dependencies we have identified.

To conclude, we return to the example in Figure 8.1 and note that the relation does not satisfy even the third normal form. Proceeding as suggested, we can still obtain the decomposition shown in Figure 8.2, which, we saw, is also In Boyce -Codd normal form. This is a result that is valid in a wide range of cases: a decomposition with the intent of obtaining the third normal form often produces schemas in Boyce-Codd normal form. In particular, we can show that if a relation has only one key (as in this case) then the two normal forms coincide. That is, a relation with only one key is in third normal form if and only if it is in Boyce-Codd normal form.

8.5.3 Other normalization techniques
Referring to Figure 8.8 we will look at further ideas about normal forms. By examining the specifications more closely, we see that we could have described this part of the application in a more suitable manner by introducing a further attribute Division, which separates the single branches according to their managers. The relation is shown in Figure 8.10.
The dependencies can be defined as follows:

· Manager → Branch Division; each manager works at one branch and manages one division;
· Branch Division → Manager; for each branch and division there is a single manager;

· Project Branch → Division; for each branch. a project is allocated to a single division and has a sole manager responsible; the functional dependency Project Branch → Manager can indeed he reconstructed.
For this schema there is a good decomposition, as shown in Figure 8.11:
· the decomposition is lossless, because the common attributes Branch and Division form a key for the first relation;

· the dependencies are preserved, because for each dependency there is a decomposed relation that contains all the attributes involved;

· both the relations are in Boyce-Codd normal form, because for all the dependencies the left hand side is made up of a key.

We can therefore conclude by stating that, often, the difficulty of achieving Boyce-Codd normal form could be due to an insufficiently accurate analysis of the application.

8.6 Database design and normalization
The theory of normalization, even if studied in simplified form, can be used as a basis for quality control operations on schemas, in both the conceptual and logical design phases. We will briefly comment on its use in logical design, and then illustrate the adaptation of the principles to the Entity-Relationship model and thus to conceptual design.

A design is sometimes incomplete, and so a revision of the relations obtained during the logical design phase can identify places where the conceptual schema can be refined. The verification of the design is often relatively easy. This is because the identification of the functional dependencies and the keys must be carried out within the context of a single relation, which is derived from an entity or a relationship already analyzed in the conceptual design phase. In this context, the structure of dependencies is generally rather simple and it is thus possible to identify directly the decomposition necessary to obtain a normal form. For example, the relation in Figure 8.3 would be produced only if, during the conceptual design phase, we do not realize that category and employee are independent concepts. By identifying the existence of functional dependencies, it is therefore possible to remedy errors.

8.6.1 Verification of normalization on entities
The ideas on which normalization is based can also be used during the conceptual design phase (or the quality control or each element of the conceptual schema. It is possible to consider each entity or relationship as if it were a relation. In particular, the relation that corresponds to an entity has attributes that correspond exactly to the attributes of the entity. For an entity with an external identifier, further attributes are necessary to include the entities that participate in the identification. In practice, it is sufficient to consider the functional dependencies that exist among the attributes of the entity and to verify that each of them has the identifier as left hand side (or contains it). For example, let us consider (see Figure 8.12) an entity PRODUCT with attributes Code, ProductName, Supplier, Address, SupplierCode. Supplier is the name of the supplier of a product, for which the Address and the SupplierCode are important.

In identifying the dependencies for this entity, we can note that various suppliers can exist with the same surname or the same address, while all the properties of each supplier are identified by its SupplierCode.. Therefore, the dependency SupplierCode → Supplier Address exists. Furthermore, all the attributes are functionally dependent on the Code attribute, which correctly constitutes the identifier of the entity. Once a code has been fixed, the product and the supplier are unambiguously determined, with their properties. Since the only identifier of the entity is made up of the sole attribute Code, we can conclude that the entity violates the third normal form. This is because the dependency SupplierCode → Supplier Address has a left hand side that does not contain the identifier and a right hand side made up of attributes that are not part of the key. In these cases, the test of normalization indicates that the conceptual schema is not accurate and suggests the decomposition of the entity itself.

The decomposition can take place, as we saw earlier, with direct reference to the dependencies, or more simply, by reasoning on the concepts represented by the entities and the functional dependencies. In the example, we understood that the concept of supplier is independent of that of product and has associated properties (code, surname and address). Thus, based on the arguments developed about conceptual design, we can say that it is .appropriate to model the concept of supplier by means of a separate entity. This entity has SupplierCode as the identifier and Name and Address as further attributes.

Since the concepts of product and supplier appear together in the same entity in the original schema, it is evident that if we separate them into two entities it is appropriate that these entities be connected. That is, there is a relationship that links them. We can reason about the cardinalities of this relationship as follows Since there is a functional dependency from Code to SupplierCode, we are sure that each product has at most one supplier. Thus, the participation of the entity PRODUCT in the relationship must have a maximum cardinality of one. Since there is no dependency from SupplierCode to Code, we have an unlimited maximum cardinality (N) for the participation of the entity SUPPLIER in the relationship. For the minimum cardinalities, we can reason intuitively. For example, assume that for each product the supplier must intuitively always be known, while we can also have suppliers that (at the moment) do not supply any product. The cardinalities are those in Figure 8.13.
We can verify that the decomposition obtained satisfies the two fundamental properties, It is a lossless decomposition, because on the basis of the one-lo-many relationship it is possible to reconstruct the values of the attributes of the original entity. It preserves the dependencies, because each of the dependencies is embedded in one of the entities or it can be reconstructed from them. For example, the dependency between the product codes and the supplier names can be reconstructed based on the SUPPLY relationship and the dependency SupplierCode → Name.

8.6.2 Verification of normalization on relationships
Concerning relationships, the reasoning is even simpler. The set of occurrences of each relationship is a relation, and thus it is possible to apply the normalization techniques directly. However, the domains on which the relation is defined are the sets of occurrences of the entities involved. Consequently, to verify that a normal form is satisfied, we must identify the existing functional dependencies among the entities involved. Since it is easy to show that each binary relation is in third normal form (and also in Boyce-Codd normal form), the verification of normalization is carried out only on the n-ary relationships, that is, on those which involve at least three entities.
Consider for example, the relationship THESIS, in Figure 8.14, which involves the entities STUDENT, PROFESSOR, DEGREEPROGRAMME and DEPARTMENT. It describes the fact that students, enrolled on degree programs, write theses in departments under the supervision of professors.

We can arrive at the following conclusions:

· each student is enrolled on a degree program;

· each student writes a thesis under the supervision of a single professor (who is not necessarily related to the degree program);
· each professor belongs to a single department and the students under his or her supervision write their theses under the care of that department.
Let us suppose that for the purposes of the thesis, the professor's department is not relevant to the degree program on which the student is enrolled. We can then say that the properties of the application are completely described by the following three functional dependencies:

STUDENT (DEGREEPROGRAMME
STUDENT (PROFESSOR
PROFESSOR (DEPARTMENT
The (unique) key of the relation is STUDENT: given a student, the degree program, the professor and the department are unambiguously identified. Consequently, the third functional dependency causes a violation of the third normal form. The affiliation of a professor to a department is a concept independent of the existence of students who write theses with the professor. Reasoning as before, we can conclude that the relationship presents undesirable aspects and that it should be decomposed, separating the functional dependencies with different left hand sides. In this way, we can obtain the schema in Figure 8.15, which contains two relationships, both in third normal form (and in Boyce-Codd normal form). Here also, we have a lossless decomposition with preservation of dependencies.

8.6.3 Further decomposition of relationships
On the schema in Figure 8.15. we can make some further observations. These observations go beyond the theory of normalization in its strictest sense, but remain within the field of analysis and verification of conceptual schemas by means of formal tools, in the specific case of functional dependencies. The relationship THESIS is in third normal form, because its key is made up of the STUDENT entity, and the only dependencies that exist on it are those that have this entity as left hand side. namely, STUDENT (PROFESSOR and STUDENT (DEGREEPROGRAMME. On the other hand, the properties described by the two dependencies are independent of each other. Not all students are writing theses and so not all of them have supervisors. From the normalization point of view, this situation does not present problems, because we assume that the relations can contain null values, provided that they are not in the key. Thus, it is reasonable to accept dependencies with the same left hand sides. However, at the conceptual modelling level, we must distinguish among the various concepts. Moreover, there is no concept of 'null values in a relationship', nor would there be any sense in introducing one. Using the dependencies, we can therefore conclude that it would be appropriate to decompose the relationship further, obtaining two relationships, one for each of the two concepts. Figure 8.16 shows the decomposed schema. The decomposition is acceptable in this case also, because it preserves the dependencies and is lossless.
If we generalize the argument developed above, we conclude that it is appropriate to decompose the n-ary relationships on which there is a dependency whose right hand side contains more than one entity. Since it is rare to encounter relationships that involve more than three entities, we can say that it is usually convenient to decompose any ternary relationship if it has a functional dependency whose left hand side consists of one entity and the right hand side consists of the other two.

In some cases however, the decomposition can be inconvenient. For example, if the two entities in the right hand side of the dependency are closely linked to each other or if there exist other dependencies that would not be preserved in the decomposition, such as, if we are interested only in students who are already writing their theses. Thus for each of them, we have a degree program and a professor who is supervising his or her thesis.
8.6.4 Further restructurings of conceptual schemas
The case, discussed in Section 8.4, of a relation for which there can be no good decomposition into Boyce-Codd normal form, can also be examined in the context of conceptual design. For example consider the schema in Section 8.17 and assume that this schema satisfies the functional dependencies discussed In Section 8.4.
We can see that the relationship is not in Boyce Codd normal form and cannot be usefully decomposed. At this stage we can identify the possibility of introducing the concept of division by means of a new entity, as shown in the schema in Section 8.18, which replaces the ternary relationship.
This entity separates the individual branches, as indicated by its external identifier. Moreover, the cardinality constraints tell us that each division of a branch has a manager and several projects associated with it. From this conceptual schema it is possible to obtain the relational schema in Figure 8 11.
8.7 Bibliography
The basic notions on normalization, with the definition of third normal form, were proposed by Codd [27]. The theory of normalization can be studied in depth in the texts on database theory, such as those by Maier [58], Ullman [88], and Atzeni and D.C. Antonellis [3]. They also give an in-depth and formal study of various aspects related to functional dependencies.
8.8 Exercises
Exercise 8.1 Consider the relation in Figure 8.19 and identify the functional dependencies of the corresponding application. Identify possible redundancies and anomalies in the relation.
Exercise 8.2 Identify the key(s) and functional dependencies of the relation shown in Exercise 8.1 and then identify a decomposition into Boyce-Codd normal form.

Exercise 8.3 Consider the relation shown in Figure 8.20, which represents information on the products of a carpentry firm and their components The following are given: the type of component of a product (attribute Type), the quantity of the component necessary for a certain product (attribute Quantity), the unit price of the component of a certain product (attribute PriceOfC), the supplier of the component (attribute Supplier) and the total price of the single product (attribute PriceOfP). Identify the functional dependencies and the key(s) for this relation.
Exercise 8.4 With reference to the relation in Figure 8.20 consider the following update operations:

· insertion of a new product;

· deletion of a product;

· addition of a component in a product;

· modification of the price of a product.

Discuss the types of anomaly that can be caused by these operations.

Exercise 8.5 Consider again the relation in Figure 8.20. Describe the redundancies present and identify a decomposition of the relation that removes these redundancies. Show the schema thus obtained. Then verify that it is possible to reconstruct the original table from this schema.

Exercise 8.6 Consider the schema of the relation in Figure 8.21. Its key is made up of the attributes Title and CopyNo, and on this relation we have the dependency Title (Author Genre. Verify whether the schema is in third normal form, and if not, decompose it appropriately. Verify whether the decomposition also satisfies the Boyce-Codd normal form.

Exercise 8.7 Consider the Entity-Relation schema in Figure 8.22. The following properties are valid:
· a player can play for only one team (or none);

· a trainer can train only one team (or none);

· a team belongs to one and only one city.
Verify whether the schema satisfies the Boyce-Codd normal form and if not, restructure it into a new schema so that it satisfies this normal form.

Exercise 8.8 Consider the relation in Figure 8.23 and the following possible decompositions:
· Department, Surname in one relation and Surname, FirstName, Address in the other;

· Department, Surname, FirstName in one relation and FirstName, Address in the other;

· Department, Surname, FirstName in one relation and Surname, FirstName, Address in the other.

With reference both to the specific instance and to the possible instances on the same schema, identify which of these decompositions are lossless.

Exercise 8.9 Reconsider the relation in Figure 8.23. Verify whether the following decompositions preserve the dependencies:

· a relation on Department, Surname and FirstName and the other on Surname and Address;
· a relation on Department, Surname and FirstName and the other on Surname, FirstName and Address;
· a relation on Department and Address and the other on Department, Surname and FiirstName.
Employee�
Salary�
Project�
Budget�
Function�
�
Brown�
20�
Mars�
2�
technician�
�
Green�
35�
Jupiter�
15�
designer�
�
Green�
35�
Venus�
IS�
designer�
�
Hoskins�
55�
Venus�
15�
manager�
�
Hoskins�
55�
Jupiter�
15�
consultant�
�
Hoskins�
55�
Mars�
2�
consultant�
�
Moore�
48�
Man�
2�
manager�
�
Moore�
48�
Venus�
15�
designer�
�
Kemp�
48�
Venus�
15�
designer�
�
Kemp�
48�
Jupiter�
15�
manager�
�

Figure 8.1 Example of a relation with anomalies.

Employee�
Salary�
�
Brown�
20�
�
Grew�
35�
�
Hoskins�
55�
�
Moore�
48�
�
Kemp�
48�
�

Employee�
Project�
Function�
�
Brown�
Mars�
technician�
�
Green�
Jupiter�
designer�
�
Green�
Venus�
designer�
�
Hoskins�
Venus�
manager�
�
Hoskins�
Jupiter�
consultant�
�
Hoskins�
Man�
consultant�
�
Moore�
Mars�
manager�
�
Moore�
Venus�
designer�
�
Kemp�
Venus�
designer�
�
Kemp�
Jupiter�
manager�
�

Figure 8.2 Decomposition of the relation in Figure 8. 1

Project�
Budget�
�
Mars�
2�
�
Jupiter�
15�
�
Venus�
15�
�

Employee�
Category�
Salary�
�
Hoskins�
3�
30�
�
Green�
3�
30�
�
Brown�
4�
50�
�
Moore�
4�
50�
�
Kemp�
5�
72�
�

Figure 8.3 A relation with various functional dependencies.

Figure 8.4 A relation to illustrate the lossless decomposition.

Employee�
Project�
Branch�
�
Brown�
Man�
Chicago�
�
Green�
Jupiter�
Birmingham�
�
Green�
Venus�
Birmingham�
�
Hoskins�
Saturn�
Birmingham�
�
Hoskins�
Venus�
Birmingham�
�

Employee�
Branch�
�
Brown�
Chicago�
�
Green�
Birmingham�
�
Hoskins�
Birmingham�
�

Project�
Branch�
�
Mars�
Chicago�
�
Jupiter�
Birmingham�
�
Saturn�
Birmingham�
�
Venus�
Birmingham�
�

Figure 8.5 Relations obtained by projection of the relation in Figure 8.4.

Employee�
Project�
Branch�
�
Brown�
Man�
Chicago�
�
Green�
Jupiter�
Birmingham�
�
Green�
Venus�
Birmingham�
�
Hoskins�
Saturn�
Birmingham�
�
Hoskins�
Venus�
Birmingham�
�
Green�
Saturn�
Birmingham�
�
Hoskins�
Jupiter�
Birmingham�
�

Figure 8.6 The result of the join of the relations in Figure 8.5.

Employee�
Branch�
�
Brown�
Chicago�
�
Green�
Birmingham�
�
Hoskins�
Birmingham�
�

Employee�
Project�
�
Brown�
Mars�
�
Green�
Jupiter�
�
Green�
Venus�
�
Hoskins�
Saturn�
�
Hoskins�
Venus�
�

Figure 8.7 Another decomposition of the relation in Figure 8.4.

Manager�
Project�
Branch�
�
Brown�
Mars�
Chicago�
�
Green�
Jupiter�
Birmingham�
�
Green�
Man�
Birmingham�
�
Hoskins�
Saturn�
Birmingham�
�
Hoskins�
Venus�
Birmingham�
�

Figure 8,8 A relation to show a decomposition with problems.

Employee�
Project�
Salary�
�
Brown�
Mars�
50�
�
Green�
Jupiter�
30�
�
Green�
Venus�
30�
�
Hoskins�
Saturn�
40�
�
Hoskins�
Venus�
40�
�

Figure 8.9 A relation for the discussion of decomposition into third normal form.

Manager�
Project�
Branch�
Division�
�
Brown�
Mars�
Chicago�
1�
�
Green�
Jupiter�
Birmingham�
1�
�
Green�
Mars�
Birmingham�
1�
�
Hoskins�
Saturn�
Birmingham�
2�
�
Hoskins�
Venus�
Birmingham�
2�
�

Figure 8. 10 A restructuring of the relation in Figure 8.8.

Manager�
Branch�
Division�
�
Brown�
Chicago�
1�
�
Green�
Birmingham�
1�
�
Hoskins�
Birmingham�
2�
�

Project�
Branch�
Division�
�
Mars�
Chicago�
1�
�
Jupiter�
Birmingham�
1�
�
Mars�
Birmingham�
1�
�
Saturn�
Birmingham�
2�
�
Venus�
Birmingham�
2�
�

Figure 8.11 A good decomposition of the relation in Figure 8.10.

Figure 8.12 An entity to undergo a verification of normalization.

Figure 8.13 The result of the decomposition of an entity.

Figure 8.14 A relationship for which normalization is to be verified

Figure 8.15 The result of the decomposition of a relationship.

Figure 8. 16 The result of a further decomposition of a relationship

Figure 8.17 A relationship that is difficult to decompose.

Figure 8.18 A restructuring of the schema in Section 8 8.17

Tutor�
Department�
Faculty�
HeadOfDept�
Course�
�
Thomson�
Maths�
Engineering�
Jackson�
Statistics�
�
Thomson�
Maths�
Engineering�
Jackson�
Number theory�
�
Robinson�
Physics�
Engineering�
Jackson�
Statistics�
�
Robinson�
Physics�
Science�
Johnson�
Statistics�
�
MacKey�
Physics.�
Science�
Johnson�
Relativity�
�

Figure 8.19 Relation for Exercise 8.1.

Product�
Component�
Type�
Quantity�
PriceOfC�
Supplier�
PriceOfP�
�
Bookcase�
Wood�
Walnut�
5�
10.00�
Smtth�
400�
�
Bookcase�
Screw�
B212�
200�
0.10�
Brown�
400�
�
Bookcase�
Glass�
Crystal�
3�
5.00 �
Jones�
400�
�
Seat�
Wood�
Oak�
5�
15.00 �
Smith�
300�
�
Seat�
Screw�
B212�
250�
0.10�
Brown�
300�
�
Seal�
Screw�
B412�
150�
0.30�
Brown�
300�
�
Desk�
Wood�
Walnut�
10�
8.00�
Quasimodo�
250�
�
Desk�
Handle�
H621�
10�
20.00�
Brown�
250�
�
Table�
Wood�
Walnut�
4�
10.00�
Smith�
200�
�

Figure 8.20 A relation containing data for a carpentry firm

Title�
Author�
Genre�
CopyNo�
Shelf�
�
Decameron�
Boccaccio�
Stories�
1�
A75�
�
Rubaiyat�
Omar Khayyam�
Poem�
1�
A90�
�
Rubaiyat�
Omar Khayyam�
Poem�
2�
A90�
�
Le Bourgeois Gentilhomme�
Moliere�
Play�
1�
A90�
�
Le Bourgeois Gentilhomme�
Moliere�
Play�
2�
A22�
�
Washington Square�
James�
Novel�
1�
B20�
�
Richard III�
Shakespeare�
Play�
1�
B10�
�

Figure 8.21 Relation for Exercise 8.6.

Figure 8.22 A relationship whose normalization is to be verified.

Department�
Surname�
FirstName�
Address�
�
Sales�
Eastland�
Fred�
6 High Street�
�
Purchasing�
Eastland�
Fred�
6 High Street�
�
Accounts�
Watson�
Ethel�
27 Acacia Avenue�
�
Personnel�
Eastland�
Sydney�
27 Acacia Avenue�
�

Figure 8.23 Relation for Exercise 8.8.

8.15

