Chapter 11
Object databases

Part IV
Database evolution
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Object databases

Object databases integrate database technology with the object-oriented paradigm. Object orientation was originally introduced within the field or programming languages and has become very popular as a paradigm for the organization and design of software systems. Object databases were originally developed in the mid eighties, in response to application demands for which the relational model was found to be inadequate.

In object databases, each entity of the real world is represented by an object. Classical examples of objects are:

·  electronic components, designed using a Computer Aided Design (CAD) system;

·  mechanical components, designed using a Computer Aided Manufacturing (CAM) system;

·  specifications and programs, managed in a Computer Aided Software Engineering (CASE) environment;

·  multimedia documents, which includes texts, images and sound, managed by multimedia document managers;

·  spatial or geographic data, such as geometric figures or maps, managed by Geographic Information Systems (GIS).

These kinds of objects differ greatly from each other and are managed by specialized applications and systems. A common requirement of all of these applications is that of organizing the data as complex and unitary objects. This demand is not satisfied by the relational model, in which each 'real world object' is distributed among a number of tables. To view the object in its entirety requires the execution of complex queries that reconstruct the various components of an object from tables in the database, by using joins. Object databases represent real world objects by means of data objects with complex structure and with rich semantic relationships. These are modeled by means of constructs similar to those used for conceptual design, introduced in Chapter 5. The most relevant features introduced by object databases are:

·  the use of inheritance, overloading, and late binding, as defined in the context of object-oriented programming languages;

·  the integration of data with the operations (or 'methods') that are used for accessing and modifying objects.

These operations 'encapsulate' objects by providing predefined proce​dures for their manipulation. Operations respond to specific application demands, hiding a lot of complexity within their algorithms. For example, consider the operations for the three-dimensional representation of geometric objects.

There are two approaches for the introduction of objects into databases. Object-Oriented Database Systems (OODBMSs) have taken the revolutionary approach, extending the DBMSs based on the characteristics of object-oriented programming languages. Object-Relational Database Systems (ORDBMSs) have on the other hand assumed the evolutionary approach, by integrating the object concept into the relational model. It should be noted that the two approaches, which appeared to be in sharp conflict at the beginning of the nineties, have recently turned out to be convergent.

In this chapter, we will first deal with OODBMSs, introducing the typical components of the object models: type constructors, classes, methods, generalization hierarchies and mechanisms for the redefinition and refinement of methods. To describe these components, we will use the O2 system as a reference OODBMS. O2 was created in France by O2 Technology, and is currently a product of Ardent Software. We will then introduce the standards ODL (Object Data Language) and OQL (Object Query Language) for the definition and querying of OODBMSs, developed within the Object Database Management Group (ODMG).

We will then describe ORDBMSs, introducing the data model for SQL-3 (which is based on the classical notions of type. relation, hierarchy and function) and some elements of the SQL-3 query language. We will then give a brief description of multimedia databases, illustrating some of the characteristics necessary for the management of multimedia objects within the database, including an overview of Geographic Information Systems (GIS). We will conclude the chapter with a look at the main technological extensions needed for data management using object-oriented organization. In particular, we will discuss interoperability in the wider context of the standards CORBA and IDL, introduced by the Object Management Group (OMG).

11.1 Object-Oriented databases (OODBMSs)
In comparison to the relative simplicity of the relational model, object-oriented databases significantly extend the expressive power of the data model. The data model exhibits many of the characteristics of the Entity-Relationship model, seen in Chapter 5. In displaying the characteristics of the model, we use the syntax of a specific system (O2); this is required because the reference standards of ODMG do not cover some aspects (for example the implementation of methods) that are important for the understanding of the OODBMS approach.

11.1.1 Types

In an object database, types allow the definition of the properties of the objects. In particular, types define both static properties (which describe the structure of the objects) and dynamic properties (which describe the behavior of the objects, by defining the operations, or 'methods', applicable to objects)

We will begin with the static part of types; the dynamic nature of types will be discussed in Section 11.1.3. The static part of types is constructed using type constructors and an extensive set of atomic data types, which include the classic data types present in programming languages: for example, integer, real, boolean, and string. Some systems allow the definition of enumeration types, the values of which are explicitly listed by the user. Atomic types include object identifiers (OID) which will be introduced later in the chapter. Most systems support the null value (sometimes indicated as nil) in all the atomic types. As in the relational model, nil is a polymorphic value, that is, belonging to many types.

Each type definition associates a name to a type. For example: Address: string is a type definition, which associates the name 'Address' to the string atomic type.
Complex data types Type constructors allow the definition of types called complex data types, which dictate the structure of the instances (called complex objects} of an object database. A recursive definition of complex data types (based on type constructors) is as follows. Let us fix a set of atomic data types.

·  The record constructor allows the definition of types whose instances are tuples of (complex) values of possibly different types. If T1,.. .,Tn are type names and A1,...,,An are distinct labels, which we will call attributes, T = record-of (A1: T1,...,An : Tn) is a record type.
·  Set. bag and list constructors allow the definition of types whose instances are collections of (complex) values of the same type. Sets are non-ordered collections without duplicates, bags are non-ordered collections allowing duplicates, and lists are ordered collections, possibly with duplicates. If T1 is a type, then T= set-of(T1) is a set type, T= bag-of(T1) is a bag type and T = list-of(T1) is a list type.

Given a complex type T, an object of data type T is an instance of T. Type constructors are orthogonal, that is, they can be applied arbitrarily, resulting in objects of arbitrary complexity. However, as is customary in many object systems, we assume that a data type definition always has the record constructor at the top level. Thus, given an object x of type T = record-of (A1:T1,...,An:Tn), we can say that the values for the attributes A1,...,.An are the properties of x. The use of type constructors guarantees the structural complexity of objects; in particular, if a real-world object is complex, type constructors allow one to model its data structure accurately. Some object databases, however, do not support all constructors, and in any case, it is not generally convenient to construct excessively complex types, because it then becomes difficult to access the type components using programming and query languages.

Let us look at an example of definition of a type for the complex object AUTOMOBILE, characterized by various properties: ReggistrationNumber, Model. Manufacturer, Colour. Price. MechanlcalParts, Some of these properties have a complex structure of their own.

Automobile: record-of(
 
RegistrationNumber: string,
 
Model: string,
 
Manufacturer: record-of(
 
Name: string, 
 
President: string,
 
Factories: set-of( record-of( 
 

Name: string, 
 

City: string, 
 

NoOfEmployees: integer))), 
 
Colour: string, 
 
Price: integer, 
 
Mechanical Parts: record-of(
 

Motor: string. 
 

ShockAbsorber: string))
Given this type definition, we can show some typical values that are compatible with the definition. In the following example, records are contained within square brackets and sets in curved brackets:

V1: ["MI67T891", "Uno", ["Fiat". "Agnelli", {["Mirafiori".
"Torino", 10000], ["Trattori", "Modena". 1000]}],
"blue", 7000. ["1100CV","Monroe"]]
Given a value of type record, we can gain access to its components using the classic dot notation, which can be applied recursively. For example:

V1.Colour = "blue"
V1.Manufacturer.President = "Agnelli'"
V1.MechanicalParts.ShockAbsorber = "Monroe"
Objects and values The above example demonstrates how we can satisfy the demand for allocating an arbitrarily complex structure to a single object. Thus. an automobile (or an integrated circuit) is described in a more detailed and unitary manner than it would be by using, for example, the relational model. However, this example also illustrates the limitations of a description based on 'values': for each automobile, made, say, by Fiat, the description of the manufacturer is repeated. Now, the manufacturer, in its turn, is made up of various data, including the name of the president and the locations of the factories. Such a description obviously introduces redundancy and goes against the normalization principles, discussed in Chapter 8.
In order to obviate this problem, we introduce object identifiers (OID). The structural part of an object is made up of a pair (oid, Value}. The value is an instance of the objects type: we call it the 'state' of an object. OlDs provide the unambiguous identification of every object in the database, and allow the construction of references between objects. In the actual systems, OlDs are automatically assigned at object creation and are generally not visible to the users. An object can include explicit references to other objects: this can be implemented at schema level by allowing, in a data type definition, the notation *T, which denotes OlDs of objects of type T. If a property of an object has type *T, then we say it is object- valued.
The following definition introduces references to objects:

Automobile: record-of(
 
RegistrationNumber: string, 
 
Model: string,
 
Manufacturer: •Manufacturer, 
 
Colour: string, 
 
Price: integer, 
 
Mechanical Parts: record-of(
 

Motor: string, 
 

ShockAbsorber: string) 
Manufacturer: record-of(
 
Name: string,
 
President: string, 
 
Factories: set-of (*factory)) 
Factory: record-of(
 
Name: string, 
 
City: string, 
 
NoOfEmployees: integer)
A set ot instances of the new type definitions is as follows:
O1: <OID1, ["MI67T891, "Uno", OID2, "blue", 7000,["1100CV", "Monroe"]]>
O2: <OID2, ["Fiat", "Agnelli", {OID3. OID4}]> 
O3: <OID3, ["Mirafiori". "Turin”, 10000]> 
O4: <OID4, ["Trattori", "Modena", 1000 ]>
The example shows that object-valued properties allow references between objects (from an automobile to its manufacturer, from the manufacturer to its factory) and the sharing of objects by other objects (the same manufacturer is referenced by various automobiles). For example:
·  the value O1.manufacturer is the OID of the object O2;
·  the value O1.Manufacturer.President is the string Agnelli.
Identity and equality The use of the oid also guarantees the possibility that two distinct objects have the same state and differ only in the OID (for example, two automobiles with the same properties), this possibility is not allowed by the relational model.
Two objects O1 and O2 are identical when they have the same OID (and obviously also the same state); in addition to identity, in the object-oriented model, there are two notions of equality:

·  superficial equality (==) requires that two objects have the same state;

·  deep equality (===) requires that two objects have identical 'reachable' values obtained by recursively substituting, at each object reference, the objects that can be reached using the OlDs for the OIDs themselves.

Note that the state of an object includes the OlDs of object-valued properties, and thus superficial equality implies deep equality. Note also that the construction of reachable values for testing deep equality could build very large objects. It could include all of the objects in the database and could even be endless in the presence of cyclic references. In general, many OODBMS systems offer an operator to verify the superficial equality of two objects, while deep equality must be programmed, for specific types, using suitable equality predicates on their reachable values.

For example, consider the following type definitions and the following objects: 
T1: record-of(A: integer, B: •T2) 
T2: record-of(C: character, D: *T3) 
T3: record-of(E: integer)

O1: <OID1 [120, OID4]> of type T1
O2 : <OID2 [120. OID4]> of type T1
O3 : <OID3 [120, OID5]> of type T1
O4 : <OID4 ['a" OID6]> of type T2
O5 : <OID5 ["a", OID7]> of type T2
O6 : <OID6 [15]> of type T3
O7 <OID7 [15]> of type T3
In this case:
·  the superficial equalities are: O1==O2, O6==O7;
·  the deep equalities are: O1===O2. O1===O3. O2===O3. O4===O5, O6===O7.
The condition for defining deep equality of objects X and Y of type Tl can be programmed as follows: X..A=Y. A and X.B.C=Y.B.C and X.B.D.E=Y.B.D.E
11.1.2 Classes
A class performs the function of an object container, to and from which objects can be dynamically added and removed. Objects belonging to the same class are homogeneous, that is, they have the same type. In the DDL, type definitions are typically given as a part of the class definitions. In general, the class definition is separated into two parts.
·  The interface describes the type of the objects belonging to the class, which includes the signatures of all its methods; each signature consists of a list of the name and type of each parameter of the method. Parameters, used in input to or in output from the method, enable the invocation of the method from within a program.

·  The implementation describes the implementation of methods and, sometimes, the data structure used for the storage of objects.

The interface describes only the operations applicable to objects, while implementation hides the coding of operations. However, in object databases the values of objects are often visible using some user interfaces other than methods (for example, using the query language). Thus, OODBMSs do not give a rigorous interpretation to encapsulation. (The strict observance of encapsulation would force each access to an object to occur by means of a method.) We concentrate on the interface and will look at the description of implementation in the next section, dedicated to methods.

The distinction between types and classes is one of the most controversial arguments in the programming language field and in object databases. In our data model, types are abstractions that allow the description of both the state and the behavior, while classes describe both the extensional representation of objects, and the implementation of methods relating to a type. The type describes abstract properties, while class describes the implementation of these abstract properties using data structures and programs. We have thus presented a data model in which:

·  types and classes are distinct concepts:
·  each class is associated to a single type;
·  the concept of class describes both the implementation and the extension of a type.
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The relationship among values, types and classes is shown in Figure 11.1. Each object has a value, which belongs to a type. Each object belongs to a class, which has a type.

More complex object-oriented data models use the concept of class solely for defining the implementation of methods. They then introduce a third concept, that of extension, which allows the insertion of objects of the same type and class into different collections (or 'extents') and to give different names to these collections (for example, the type citizen could correspond to a same class but to different collections, called Londoner and Florentine}. In this case, the three concepts of type, class and extension would be present. On the other hand. some OODBMSs do not distinguish types or classes, in that they unite the two concepts and give the type the role of defining extensions and implementations of methods.
For example, let us look at how in O2 the definition of class syntactically includes the type definition. Note the use of class names in the type definition, which are implicitly interpreted as references:
add class Automobile
 
type tuple (RegistrationNumber: string, 
 

Model: string, 
 

Maker: Manufacturer. 
 

Colour: string, 
 

Price: integer, 
 

Mechanical Parts: tuple(
 


Motor: string,
 


ShockAbsorber: string))
add class Manufacturer
 
type tuple(Name: string.
 

President: Person, 
 

Factories: set ( Factory))

add class Factory
 
type tuple(Name: string, 
 

City: string, 
 

NoOfEmployees: integer)

add class Person
 
type tuple(Name: string,
 

Address: string, 
 

TaxCode: string)

The class structure can be represented graphically, highlighting the links between classes corresponding to object-valued properties Figure 11.2 shows the four classes introduced up to now, inserted into a schema that includes other classes and a generalization hierarchy, to be discussed later.
11.1.3 Methods
Methods are used to manipulate the objects of an OODBMS. Their presence is the main innovative element in an OODBMS when compared to a relational database. A method has a signature, which describes the parameters of the method and includes all the information that allows its invocation, and an implementation, which contains the method code. Often the implementation of methods is written in an object-oriented prog​ram​ming language, such as Smalltalk or C++. The signature of the method is one of the components of the class definition.
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In general, each method is associated with a specific object class. In this case, the method has a specific object class as target. There are, however, systems that allow multi-target methods, which are applied to an arbitrary number of objects without favoring one in any specific manner. In this case, their definition is given separately from the class definition. We will assume furthermore that each method has an arbitrary number of input parameters and a single output parameter. These assumptions are valid for the O2 system (but not in standard OQL, described in Section 11.2).
The methods present in an OODBMS can be classified into four categories:

·  constructors are used to construct objects based on their input parameters;
·  destructors are used to cancel objects and possible other objects linked to them;

·  transformers change the contents of the state of the objects;

·  accessors are used to access portions of the objects state.

Other methods cannot be classified on the basis of this schema, and respond to specific application demands. In many systems, a distinction is made between public and private methods. Public methods can be called from any application program, while private methods can be called only from within other methods of the same class. Based on this distinction, objects are encapsulated to the maximum when it is possible to access them only by means of public methods.
In the DDL, signatures of methods may be introduced as part of the class definition; alternatively, each method can be autonomously introduced by a specific definition, in which the class target is nominated. This second option allows an incremental definition of the schema, and will be used later. The init method is a constructor; it builds part of the state of a newly created object of the class AUTOMOBILE. It receives as input parameters some values that should be assigned as the initial state of an object, and returns the object itself as output parameter. In the example, the method is applied to an object of the class AUTOMOBILE, which can be considered as an implicitly defined input parameter. Let us look at the definition of a signature (add method instruction) and of implementation (body instruction) in O2.
add method init (RegistrationNunber_par: string,
 
Model_par: string,
 
Colour_par: string, 
 
Price_par: integer): Automobile in class Automobile is public
body init (RegistrationNunber_par: string,
 

Model_par: string,
 

Colour_par: string, 
 

Price_par: integer): Automobile in class Automobile 
co2{self -> RegistrationNumber = RegistrationNumber_par;
 
self -> Model = Model_par;
 
seIf -> Colour = Colour_par;
 
self -> Price = Price_par;
 
return(self); }$
Note that the implementation of methods is written in C02, an extension of C, which allows direct and transparent access to the objects stored in the database. Syntactically, the implementations are enclosed in a block initially delimited by a keyword co2 and terminated by the symbol $. These symbols invoke an appropriate pre-processor at execution time. The variable self, introduced implicitly in the implementation, denotes the object of the class target to which the method is applied. With a different terminology, the invocation of a method on a given object is denoted as sending a message in that object; self denotes the receiving object, that is, the object that should receive the message. The dot notation, introduced in Section 11.1.1, is used in CO2 as C access mechanisms.

The invocation of the method init. in a program written in CO2, is as follows:
execute co2 {
 
o2 Automobile X;
 
X = new(Autooobile);
 
[X.init("MI56T778", "Panda", "blue”, 12000)]; }$
The first instruction of the program defines a variable o2 named X and of type Automobile. The second instruction creates an object of the class AUTOMOBILE, using the invocation of the new method. The polymorphic method new is available within all classes for the creation of new objects and their insertion into the class. Finally, the third instruction applies the method init to that object, giving an initial value to some of its properties. Note that in the method call we indicate the target object and the name of the method, followed by a list of the actual values of the input parameters. At the end of the execution of the method, the object on which the method itself is invoked is returned as an output parameter.

The method Increase in the class AUTOMOBILE is a transformer. It increases the price by a certain amount. The amount is the only parameter of the method.;
add method Increase (amount: integer) in class Automobile is public
body Increase(Amount:: integer) in class Automobile 
 
co2{ self -> Price += Amount;}$

The next example shows the nested invocation of the init and Increase methods. which are possible as the init method returns the target object as output parameter

execute co2 {
 
o2 Automobile X;
 
[[X init("MI56T778", "Panda", "blue", 12000)] 
 
Increase(2500)];}$
To end this section, we summarize the properties of objects. Each object has an OID, a state and a behavior. The OID guarantees the unambiguous identification of the object in the database, and allows the construction of references between objects. The state of an object is the set of values assumed by its properties at a particular time. Finally, the behavior of an object is defined by the methods that can be applied to the object itself, and predefines its evolution with time.

Impedance mismatch These examples show an important characteristic of object-oriented databases: programs can manipulate persistent objects using instructions of a programming language. It is said that object-oriented databases resolve the impedance mismatch, introduced in Section 4.6.1, which characterizes relational query languages. The mismatch consists of the difference between operating upon scalar variables one at a time, as programming languages do, and processing sets of tuples, as in SQL. In effect, this mismatch requires the use of mechanisms such as cursors for scanning the results of a query one by one; but cursors, as illustrated in Section 4.6.2, are very rigid and not very user-friendly. In contrast, in the programming of OODBMSs, the programming language for writing methods acts upon persistent objects one by one, in the same way as it acts with the temporary variables of the program. In most cases, the program manipulates temporary and persistent objects in exactly the same way. In this case, it is said that persistence is an orthogonal characteristic, of which the programmer is unaware.

Historically, in object-oriented databases, much importance was given to this aspect, favoring the use of programming with imperative style in access to data. More recently, however, a demand has emerged for adding a query language to OODBS, for accessing objects based on their contents. As we shall see in Section 11.2.2, OQL offers a query language for object-oriented databases, comparable to SQL.

Criteria for designing methods One or the main advantages of object-oriented programming is the possibility of reusing the various system components. If the methods are carefully designed, most of the application code is defined only once, is included in the methods, and is used by various applications.
Some criteria help the designer in the design of methods to guarantee their maximum reusability. OMT is a popular object-oriented software design methodology, described by Rumbaugh et al. [71] which makes the following suggestions.
1. Methods must be brief. Informally, their code must not extend beyond more than two pages of text. Longer methods should be decomposed.
2. Methods should be coherent (that is, developing a single function) and consistent (that is, using consistent notations; for example, a common style for introducing variable names).
3. Methods should not internally confuse policies with implementations. Separating them increases the possibility of sharing the implementations among different policies.
4. Methods should anticipate requirements for future applications: rather than limiting themselves to carrying out the minimal requests for current applications, they should be more wide-ranging and deal with more general cases.
5. Methods should be independent. They should use information defined locally or accepted as parameters, avoiding the use of global variables.
6. Inheritance should be exploited as much as possible. The most commonly used methods should be defined in the super-classes and reused in the sub-classes We will develop this concept in the next section.
11.1.4 Generalization hierarchies
The possibility of establishing generalization hierarchies between classes is probably the most important abstraction in object-oriented languages and databases. A generalization hierarchy defines the relationships between a super-class and its sub-classes. Generalization hierarchies between classes are very similar to the generalization hierarchies between entities, which we looked at in the Entity-Relationship model (Chapter 6). They guarantee the semantic complexity of objects. In a generalization hierarchy:
·  all the objects of the sub-class belong automatically to the super-classes;

·  all the properties and methods of the super-classes are inherited by the sub-classes;
·  It is possible to introduce new properties and new methods into the description of sub-classes

It is possible to redefine the implementation of a method without modifying its interface, to obtain various implementations of the same method, which can be called uniformly on objects of different types belonging to the hierarchy. The system uses the more specific implementation based on the type of the object. We will deal with this aspect in Section 11.1.6. It is also possible, even if it causes a few complications, to refine the state and the behavior (that is. change the definition of some of the inherited attributes and methods in the subclasses, making them more specific). We will deal with this aspect in Section 11.1.7.
Generalizations have transitive properties. Thus if C1 is a sub-class of C2 and C2 is a sub-class of C3, then C1 is also a sub-class of C3. The relation of sub-class must be acyclic.
Due to inheritance, the definition of sub-classes can be limited to introducing new attributes and methods, while the attributes and methods defined for the super-class are automatically inherited by the sub-classes. For example, we define the sub-class SPORTSCAR and ViNTAGECAR of the class AUTOMOBILE in O2:
add class SportsCar inherits Automobile 
 
type tuple(Max5peed: integer, 
 

Driver: Person)
add class VintageCar inherits Automobile 
 
type tuple(ManufactureDate: integer)

By virtue of inheritance, the class VINTAGECAR inherits the properties and the methods defined for AUTOMOBILE (for example, the attributes Model and Colour and the methods init and Increase). We can thus invoke the init method on an object of the class VINTAGECAR:
execute co2 {
 
o2 VintageCar X;
 
X = new(VintageCar);
 
[X init("MI56543", "Ferrari", "red", 300000)];
 
X -> ManufactureDate = 1957; }$
When a method m can be called in a class C1, the implementation of m could be undefined in the class C1. In this case. there must be an implementation of m in some super-class C2 of C1; (his implementation of m is executed. When there are two super-classes C2 and C3 of the class C1 that possess an implementation of m, the implementation of the lowest class in the hierarchy is chosen; this is also the most specific implementation relative to the class C1.
Migrations between classes In   the   presence   of  generalization hierarchies, some OODBMSs allow objects to migrate from one level of the hierarchy to another. In other OODBMSs, objects remain for their entire existence in the class where they were created. The operation by which an object migrates from a super-class to a sub-class is called specialization. Due to a migration, the state of the object is generally modified, adding new properties. The inverse of specialization is called generalization and allows an object to migrate from a sub-class to a super-class. The state in general loses some of its properties.

For example, an object of the AUTOMOBILE class can be specialized, becoming an instance of the class VINTAGECAR at a certain point of its existence. On the other hand, an object of the SPORTSCAR class to which the generalization operation is applied, ceases to be an instance of that class remaining, however, in the AUTOMOBILE class.
There is a distinction between being an instance or a member of a class. An object is an instance of a class only if it is the most specialized class for the object in the environment of a generalization hierarchy. The instances of a class are automatically members of its super-classes. In some OODBMSs, each object can be instances of many classes, that is, can belong to two or more distinct more specialized classes, which cannot be compared between themselves from the hierarchy point of view. In other OODBMSs, each object must be the instance of only one class. In our example, an object of the AUTOMOBILE class can be instances of the two classes if it is specialized into both classes SPORTSCAR and VINTAGECAR.
Multiple inheritance In some systems, it is possible for a class to inherit from more than one super-class. This situation is called multiple inheritance. For example, we can define the class ViNTAGESPORTSCAR with the following definition:

add class VintageSportsCar
 
inherits SportsCar, VintageCar 
 
type tuple(PastVictories: set(string))
Note that this hierarchy of classes defines a situation illustrated in Figure 11.3. in which:

·  the instances of the class VINTAGESPORTSCAR are automatically members of the classes AUTOMOBILE, SPORTSCAR and VINTAGECAR:
·  some instances of the classes sportscar and VINTAGECAR are not in the class VINTAGESPORTSCAR; they are automatically members of the class AUTOMOBILE:
·  finally, there are instances of the AUTOMOBILE class that are not in either SPORTSCAR or VINTAGECAR.
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Note finally that whenever the system allows objects to be instances of two classes, SPORTSCAR and VNTAGECAR, at the same time (as the most specialized classes), they can exist in the database without being in the VINTAGESPORTSCAR class. The belonging of an object to a class is not automatic, and requires an explicit insertion operation of that object into the class.
Conflicts Instances of classes with multiple inheritance or objects that are instances of more that one class can be the source of name conflicts whenever two or more super-classes have attributes or methods with the same name. In this case. we must define the policies for conflict resolution, to make the mechanisms of inheritance unambiguous. We list some of the possible solutions.
· Reveal the conflict at the time of definition of the classes and do not accept the definitions as correct. This solution has the disadvantage of imposing a rethink of already consolidated parts of the schema. The problem is eliminated only by changing the names of the attributes and/ or methods that cause the conflict.
·  Define the mechanisms to make the choice unambiguous. For example, by using an ordering between classes denned beforehand, or by applying a method to an object in the context of a given target, which is explicitly defined in the method call, thus solving the conflict.

·  Redefine the properties and methods locally, as described in the next section. The local redefinition eliminates the conflict.
11.1.5 Persistence
The objects defined in a program can be persistent or temporary. Temporary objects cease to exist at the end of the execution of a program, while persistent objects are inserted into the persistent storage space of the OODB. In general, an object becomes persistent by means of the following mechanisms.
·  By insertion into a persistent class. In this case, the primitive new generates a persistent object as described in some examples of this section.

·  By reachability based on another persistent object. For example, if we have two objects of the types Automobile and Manufacturer in which the first refers to the second and then the first is inserted into a persistent class, then the second also becomes persistent. In this way, the state of an object that can be deconstructed recursively by means of references is persistent.

·  By denomination, that is, by giving a name to an object (called a handle), which can be used to find it in a later invocation of the program. For example, in O2, we can declare a variable and then to give it a name, making the corresponding object persistent:

X SportsCar;
add name Ferrari_Testa_Rossa: X

Not all of these mechanisms for making objects persistent are supported in all OODBMSs. In some systems, persistence is defined at class level, that is, by distinguishing between persistent classes and temporary classes. The persistent or temporary nature of objects is defined when the object is inserted into the class. Persistence by means of reachability guarantees referential integrity of the OODB, that is, the automatic maintenance of referential integrity constraints between classes that are similar to the referential integrity constraints between tables, discussed in Section 2.3.4. This type of persistence however, brings some difficulties into the deletion of the object from the OODB. In practice, an object can be deleted from the system only when it can no longer be reached by denomination or referenced by other persistent objects. Deletion is performed by a specific subsystem called the 'garbage collector'.
11.1.6 Redefinition of methods
Once a hierarchy has been introduced, we can redefine methods of the sub​classes. This technique is called overriding of methods and is extremely useful for guaranteeing the specialization of methods for subclasses, while at the same time presenting a uniform methods interface. The classic example that is used to show the advantages of redefinition is the display method, which is used to show an object on the screen Let us suppose the existence of a generic OBJECT class, from which all the other classes inherit. In this class, we define the interface of the display method, having the target object as its only input parameter, and a fictitious implementation. The method is then redefined within all the other classes that inherit from OBJECT. We have, for example, the classes OWNER, HOUSE. PLAN, SALESCONDITIONS relating to the activities of selling a house. Within each class, the display method is implemented differently. For example, display applied to the house retrieves and then shows a photograph of the house; for the plan, it shows a floor plan of the house; for owner and sale conditions, it shows a schema with the appropriate information. We can thus write code that, given a set S of heterogeneous objects, calls the function display for it in a compact way, for example:

for X in S do display(X)
Obviously, the choice of which implementation to invoke depends on the type of the object to which the method is applied. In particular, if the type of object is not known at compilation time (for example, because the objects can be specified during the transaction, or it can migrate between the classes), this choice must happen at execution time. This characteristic is called late binding. The system must be able to link dynamically, at execution time, a specific implementation of the method with the rest of the application program

As an effect of redefinition, we can have various versions of the same method with identical interfaces (and in particular, identical method names). This phenomenon is called overloading of names of methods

Let us look at an example of the overriding and overloading of methods. Consider data management for the design of software systems. In this case, we will introduce a generalization hierarchy with the generic class FILE and the sub-classes SOURCE and DOCUMENTATION. These classes are characterized by attributes introduced locally. The initialization method is able to initialize the objects based on their types.

add class File 
 
type tuple (Name: string,
 

Creator: User,
 

Date: date) 
method init(Name_par: string) is public
add class Source inherits File 
 
type tuple(Manager: User)
add class Documentation inherits File 
 
type tuple (ValidationDate: Date)
body init(Name_par: string) in class File is public 
co2 { self -> Name = Name_par;
 
self -> Creator =  @ThisUser;
 
self -> Date = @Today; }$
body init(Name_par: string) in class Source is public 
co2 {[self init@File(Name_par)];
 
self -> Manager = @ThisUser; }$
body init(Name_par: string) in class Documentation is public 
co2 {[self init -> File(Name_par)];
 
self -> ValidationDate = @EndOfPeriod; }$
Note that the init method, defined in the FILE class, is reused in the two sub-classes. The operator @ is used to call the init method as implemented in a different class, thus enabling the reuse of defined methods in generic classes in the implementation of methods in more specific classes. 
Note also that the use of the global variables @ThisUser, @Today and @EndOfPeriod (also recognized by an initial @) is acceptable in the context of the implementations of methods. Using the above method definition, we can initialize an object corresponding to a file independently of where it belongs in the class hierarchy. In the following code, it is necessary simply to replace the term CLASS by any of the three class names introduced in the example.

execute co2{ 
 
o2 Class X;
 
X = new(Class);
 
[X init("myprog")]; }$
11.1.7 Refinement of properties and methods
The redefinition mechanisms seen in the previous paragraph do not modify the methods interface. However, it is also possible to refine properties and methods by modifying the interface, by introducing the notion of sub-typing.
Sub-typing is a relation between types. Intuitively, T1 is a sub-type of T2 if the possible values of type T1 are more specific than the possible values of T2. For example, if T2 is an enumerated type, T1 can be defined as a subset  of values of T2. Each type is a sub-type of itself, and in the O2 system, in which the classes are also interpreted as types, if T1 is a sub-class of T2, it is also a sub-type of T2.
An important case is that of record: given a type record T1 = [A1:  T1,..., Am: Tm], another record type T2 is a sub-type of T1 if it has the structure T2 = [A1 : T'1,..,Am: T'm, Am+1 : T'm+1,...,An :T'n], with T'i sub-type of Ti for 1 <= i <= m and with n >= m. The sub-types can thus have other attributes that make them more specific, while the types T'i of attributes Ai, can be sub​types of Ti.
Having introduced the notion of sub-type, we can illustrate their use in the redefinition with refinement both of the properties and of the methods.

·   Consider the definition of a class C2, which inherits from C1. and a generic property A : T of C1 where A is an attribute of type T. The covariance of the properties consists of giving the property A in C2, which is redefined, a sub-type T' of T.
·  Consider the definition of a class C2, which inherits from C1 a generic method m characterized by a certain number of input parameters, of type T1, and one output parameter of type T. The covariance of the output parameter consists of giving the method m', which is redefined in C2, a sub-type T' of T. As regards input parameters:

· the covariance of an input parameter of m with type T, in C1, consists of giving to that parameter, which is redefined in C2, a sub-type T'i of Ti.;
· the contravariance of an input parameter of m with type Ti in C1 consists of giving to that parameter, which is redefined in C2, a type Ti' such that Ti is a sub-type of T'i.
The covariance of properties and of input parameters of methods, adopted by most object-oriented systems (including O2), is the most intuitive and useful notion in the specialization of properties and methods. However, the covariance of input parameters of methods may generate programs which cannot be statically checked for what concerns the correspondence between formal and actual parameters in method calls. This is illustrated by the following example.

Let us examine the mechanisms of redefinition. We adapt the previous example by adding two classes, USER and PROGRAMMER, whose structure is not relevant.

add class User ... 
add class Programmer inherits User ...
add class File 
type tuple(Name: string,
 
Creator; User,
 
Date: date)
method init (Name_par: string, User_par: User): File is public
add class Source inherits File 
type tuple (Creator: Programmer)
method init (Name_par: string, User_par:  Programmer): Source is public
body init (Name_par: string, User_par: User): File is public 
co2 {(self -> Name =Name_par;
 
self -> Creator = User_par;
 
self -> Date = @Today;
 
return(self); }$
body init(Name_par: string, User_par:  Programmer): Source in class Source is public 
co2 {[self init@File(name_par, u«er_par)];
 
return(self)]; }$
Observe that in the redefinition of the SOURCE class, the property Creator is redefined; the creator is no longer a generic user, but rather a programmer. This is an example of covariant definition of property, which can be useful from an application point of view, if we wish to impose the condition that only the programmers can create source files.

The init method is called with an input parameter, which indicates who the user is, and must be correctly typed: the initialization of a generic FILE should receive as input parameter a generic user, but the initialization of a SOURCE must receive as input parameter a programmer. This is an example of covariant redefinition of input parameters. It is impossible to check at compilation time whether the invocation of the method is correct when objects can migrate dynamically from the USER class to the programmer class and vice versa.

Finally, the output parameter of the method is also redefined, in that when it is invoked in a sub-class it returns a more specific type This is an example of covariant redefinition of the output parameter, which poses no problems of type checking.

11.1.8 The object-oriented database manifesto
To conclude this section on OODBMSs, let us remember their main characteristics, as they are defined in the 'object-oriented database manifesto', an article that first introduced a certain order into the definition of characteristics of OODBMSs. Based on this article, the properties of an OODBMS are classified into mandatory and optional factors. The first ones include the following 13 properties.

7. Structural complexity, that is, the capacity for defining complex types using orthogonal type constructors.

8. Object identity, that is, the possibility of unambiguously identifying an object based on its OlD.

9. Encapsulation, that is, the capacity for encapsulating an object within an interface that defines the public methods applicable to the object, the only ones capable of modifying the state. In the OODB world, however, normally the data structure is "exposed". That is, it is made public, to allow data manipulation by means of query languages

10. Types and/or classes. The two concepts must both be present: the former concept represents a verification mechanism for the accuracy of programs at compilation time; the latter represents a mechanism that collects the object extensions and defines their implementation. Conversely, it is not necessary that there be two different ways to express types and classes, and thus it is possible to express one concept in the context of the other.

11. Class and/or type hierarchies, that is, the capacity to give semantic complexity to the OODB by organizing the classes (using generalization hierarchies) and by giving them more specific types (using type hierarchies).

12. Overriding, overloading and late binding, which make it possible for each object the execution of the method most specific to it, determined at execution time.

13. Computational completeness of the language in which methods are expressed.

14. Extensibility, that is, the capacity for defining new types based on user requirements.

15. Durability, that is, the capacity to support persistent data.

16. Efficiency in the management of secondary memory .access.
17. Concurrency, that is, the capacity to manage concurrent accesses.

18. Reliability, that is, the capacity to react to failure.

19. Declarativeness, that is, the presence of a high-level query language.

Some further optional characteristics, which are considered interesting and useful but not essential in an OODBMS, include: multiple inheritance, the possibility of type checking of a program at compilation time, data distribution, management of long or embedded transactions, and the presence of explicit mechanisms for version management.

11.2 The ODMG standard for object-oriented databases
The Object Database Management Group is a committee in which the main constructors of OODBMSs are represented. The committee was brought together towards the end of the eighties, when it appeared evident that the lack of a model and a standard query language in OODBMSs was a common element of weakness in a market that is increasingly demanding portable solutions. The ODMG committee thus proposed a data model with a definition language (ODL), a query language (OQL), and mechanisms for the definition of methods in languages such as C++  and Smalltalk. These standards aim at achieving interoperability among the multiple systems of different suppliers.

11.2.1 Object Definition Language: ODL
In this section we will describe the data model ODMG-93 and the ODL (Object Definition Language) for the definition of object schemas. In the ODMG-93 model there can be many classes for each type, each class containing a different implementation of the type. odl describes types (and not classes) and is independent of the programming language chosen for the implementation of the classes. In odl, the references between types are called relationships and are bi-directional: for each link between one type and another, an inverse link is defined. In this way, ODL offers a vision of the object-oriented schemas very close to those of the Entity-Relationship schemas. An ODMG-93 schema is shown in Figure 11.4.
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Using the ODL syntax, let us look at a part of the example on automobile management, which was introduced above:

interface Automobile 
 
{extent Automobiles
 
 key RegistrationNumber} 
 
{attribute string RegistrationNumber;
 
 attribute string Model;
 
 attribute string Colour;
 
 attribute integer Price 
 
 attribute structure MechanicalParts 
 

{string Motor, 
 

string ShockAbsorber} ;
 
relationship <Manufacturer> Maker 
 

inverse Manufacturer::Builds;}
interface Manufacturer 
 
{attribute string Name;
 
 attribute string President;
 
 relationship set<Automobile> Builds 
 

inverse Automobile:: Maker;
 
 relationship set<Factory> Factories 
 

inverse factory::Manufacturer;}
interface Factory 
 
{attribute string Name;
 
 attribute string City;
 
 attribute integer NoOfEmployees;
 
 relationship <Manufacturer> Manufacturer 
 

inverse Manufacturer::Factories)
Note that the first section of the interface, which is optional, describes the properties of types. This section is present only in the type AUTOMOBILE; the clause extent introduces the name of the container of objects of type AUTOMOBILE, and the clause key, as in the relational model, lists the attributes that identify the objects belonging to the type extensions. Note that the importance of keys in an OODB is minor in comparison with a relational database, as the identification is provided by the object identifiers

We next show the ODL syntax for introducing sub-classes with the example of the definition of SPORTSCAR.

interface SportsCar: Automobile 
     {attribute integer MaxSpeed}
In ODL it is possible to define only method interfaces within type definition. Methods’ implementation is carried out using a programming language. The standard defines two bindings towards the languages C++ and Smalltalk, for denning both the class structure and the implementations of methods. Within the AUTOMOBILE class, the interfaces of methods init and Increase are defined in ODL as follows:
interface Automobile
{... 
Automobile init (in string RegistrationNumber_par,
 
in string Model_par,
 
in string Colour_par,
 
in integer Price_par) ;
void Increase (in integer Amount) raises(ExcessivePrice);
}
The methods in general have multiple input parameters, and can return zero or more output parameters. In ODL. each parameter is characterized by the keywords in, out, or inout (when a dual role is carried out). In addition, a method can be characterized by a main output parameter, returned by the method. The void clause in one of the two examples indicates the absence of the main parameter. The raises clause indicates the presence of an exception. which is raised whenever the price evaluated by the method is excessive.
The two examples of definition in O2 and ODL show quite different styles and syntaxes, but also show many common concepts.
11.2.2 Object Query Language: OQL
The OQL language, originally developed for O2. was adapted by the ODMG, with various modifications, and is currently considered the standard query language for OODBMSs. OQL is an extension of SQL, even if the similarities between the two languages are more apparent than real and largely depend on the use of the same keywords. OQL, like SQL, is a pure query language. It does not include, for example, control structures. However, from OQL it is possible to invoke methods, which increase its expressive power. Currently, OQL does not include primitives for modifying the state of the objects contained in the database, as these modifications can be obtained by using methods. We must remember that, if the system guarantees a 'strong encapsulation', the only modifications of the state of the objects should happen by means of the use of its public methods.
Below, we will look at some typical queries in OQL. which give an idea of the expressive power of the language, without attempting to deal with all of its characteristics. The examples of the use of OQL given in this section refer to the database described in Figure 11.2, partly denned in O2 in Section 11.1.2 and Section 11.1.4.
The first example of the use of this language is the following query, which retrieves the registration numbers of the red cars:
select distinct x.RegistrationNumber 
from x in Automobile 
where x.Colour = "red"

This query returns an object of the type set (string). The keyword distinct, as in SQL, is used to eliminate duplicates; in this query it could be omitted if we assume that all the cars have distinct registration values. Note the use of the variable x. introduced in the from clause and declared on the AUTOMOBILE class.

The property of inheritance allows the invocation of properties defined within the generic super-classes. Thus, the query that retrieves the registration numbers of the red cars that won the 1954 Italian Grand Prix is simply:
select x.RegistrationNumber
from x in VintageSportsCar
where x.Colour = "red"
and "Italian GP 1954" in x.PastVictories
In the selection predicate, the operator in is used, as the type of the attribute PastVictories is a set of strings. Note that in this case the result is an object of type bag (string), although registration numbers typically have no duplicates.

Complex expressions A characteristic that makes OQL more powerful than SQL is the facility of using complex expressions (path expressions) in any expression where an object property may appear. For example, the next query retrieves the registration numbers of the vintage cars built at Maranello and driven by Fangio:

select x.RegistrationNumber
from x in VintageSportsCar
where x.Driver.Name = " Fangio"
and "Maranello" in x.Maker.Factories.Name
Given the schema in Figure 11.2, it is possible to ask whether there exist people who are both drivers and manufacturers of the same sports cars:

select x.Driver.Name
from x in VintageSportsCar
where x.Driver = x.Manufacturer.President
The result has the type bag(string); in this case there can be several different drivers with the same name. Note that the above query requires the identity of the person who is both a driver and president of the firm of manufacturers. Conversely, the following query also retrieves pairs of homonymous persons, that is, it requires equality of their names, and thus it is an incorrect formulation of the previous query:

select x.Driver.Name
from x in VintageSportsCar
where x.Driver.Name = x. Manufacturer.President. Name

Complex OQL path expressions can be broken down by introducing several variables in the from clause, and at the same time adding predicative expressions that link these variables. This programming style in OQL is similar to the use of joins in SQL. For example, the query that extracts the Ferrari sports cars that were constructed at Maranello and have a maximum speed of over 250 Km/h can be expressed using three variables and two predicates. The variables are, respectively, on SPORTSCAR. MANUFACTURER and FACTORY. The predicates link the variables two by two and are thus used in the same way as a join in SQL:

select a.RegistrationNumber
from a in SportsCar, c in Manufacturer, s in Factory
where c = a.Manufacturer and s in c.Factories
and a.City = "Maranello" and c.Name = "Ferrari'
and a.MaxSpeed > 250
Construction and use of complex objects In OQL it is possible to introduce structural complexity in all the clauses of a query. The following query extracts two attributes, whose type in OQL is constructed by means of a record: retrieve distinct models and colors of the sports cars that won the 1986 Le Mans 24 Hours:

select distinct struct(Model: x.Model, Colour: x.Colour)
from x in VintageSportsCar
where "LeMans86" in x.PastVictories
The type of the result is set (record (string, string)).
The following example introduces structural complexity in the select clause, by adding an OQL sub-query into it. The query retrieves the names of the manufacturers who sell sports cars at a price higher than 200000; for each of them it lists the city and number of employees of the factories.

select distinct struct(
 
Name: x.Maker.Name, 
 
Fact: (select struct (Cit: y.City,
 


Emp: y.NoOfEmployees) 
 

from y in Factory 
 

where y in x.maker.Factories) 
from x in SportsCar 
where x.Price > 200000
Note that in the evaluation of the query, the variable x is associated to those sports cars that satisfy the selection condition on prices, and y is associated with those factories that are related to the selected sports cars. The type of the result is set(record(string,bag(record(string, integer) ))).
We can examine the use of an OQL sub-query within the from clause, for the query that extracts the number of models of cars built by manufacturers that have a global total of employees, in all factories, higher than 4500.
select count(select distinct x.Model 
 
from x in
 

(select y
 

from y in Automobile, z in Manufacturer 
 

where z = y.Maker 
 


and sum(x.Factories.NoOfEmployees) > 4500))
In this case, the aggregate function count is evaluated in the target list (on a set without duplicates) and the function sum is evaluated in the where clause of the most internal query (on a set). In general, the aggregate functions count, min. max, avg, and sum can be applied to sets. bags or lists.
Groupings and orderings Finally, we will show some examples of the use of grouping and ordering, which are provided in OQL. For example, the following query retrieves the list of registration numbers in the class of cars:

sort x in Automobile by x.RegistrationNumber
The next query has the same expressive power as an SQL query with grouping. It extracts the number of cars grouped according to their manufacturers. Note the keyword partition, which denotes each partition obtained using the group by clause.

group a in Automobile
by (constr: a.Maker)
with (AutoNumber: count(select x
 
 from x in partition))
The result is an object consisting of a set of tuples, which list, for each value of Maker in AUTOMOBILE, the set of AUTOMOBILE objects with that value (denoted through their OID) and the cardinality of that set. The type of the result is therefore set (struct (string, set (OID), integer)).
Finally, grouping can happen according to partition predicates. For example, the next query classifies the sports cars into low. medium and high according to the price:
group a in SportsCars 
by (Low:    a.Price <   50000,
 
Medium: a.Price >= 50000 and a.Price < 100000.
 
High:   a.Price >= 100000)
Supposing that n partitions are defined (n equals 3 in the example), the result has a particular structure. It is a set of records with n + 1 attributes. The first n attributes are boolean and assume in each record a single value true (corresponding to the value assumed by the partition) and n - 1 false values. The attribute n + 1 is a set containing the objects which are part of each partition. Thus the type of the result is set (struct (boolean, boolean, boolean, set(OID))>.
It is possible to apply a further aggregate function to this result, for instance to count the number of elements present in each partition, as follows:
select stuct(Low:: x.Low, Medum: x.Medium, High: x.High,Total: count(x.partition)) 
from x in
 
(group a in SportsCar 
 
 by (Low:    a.Price < 50000. 
 

Medium: a.Price >= 50000 and a.Price < 100000, 
 

High:   a.Price >= 100000))
11.3 Object-Relational databases (ORDBMSs)
Object-Relational databases (ORDBMSs) are an evolution of relational databases. These systems introduce compatible extensions of the classic notion of a table of SQL-2 and they allow the expression of most of the OODBMS concepts. In this section, we will show SQL-3, the language that is used to guarantee such compatible extensions. Then we will show the difference between SQL-3 and 'pure' object-oriented databases (OODBMSs) illustrated up to now. As we have already observed, the distance between OODBMSs and ORDBMSs is diminishing, especially in the data model. In the course of this section, we will first introduce the SQL-3 data model and will then show some characteristics of the SQL-3 query language.

11.3.1 SQL-3 data model
The data model used by ORDBMSs is also called the 'SQL-3 Data Model', as it is defined by the Data Definition Language (DDL) of SQL-3; it is compatible with the relational data model, as defined in SQL-2. Thus, in the SQL-3 model it is possible to define SQL-2 tables, such as for example the classic table for PERSON, with SQL-2 integrity constraints:

create table Person
 
Name varehar(30) not null,
  
Residence varehar(30),
 
TaxCode char (16) primary key)
However, the approach suggested in the ORDBMSs is first to define a type for the tuples, to make it reusable. In any type definition, it is possible to use complex type constructors., which significantly extend the notion of domain present in SQL-2. Availability of type constructors is the first significant difference from classic relational databases.
Tuple types In the SQL-3 data model it is possible to use both tuple types (row types) and abstract types, which will be defined later. The first are used essentially for the construction of tuple structures fur insertion into the tables Thus, the previous definition can be split in the following two definitions:
create row type PersType(
 
Name varehar(30) not null,
 
Residence varehar(30),
 
TaxCode char(16) primary key)

create table Person of type PersType
In this example, the type PersType can also be used in other tables. It is thus possible to define:
create table Industrial of type PersType 
create table Driver of type PersType
Note that objects and classes in OODBMSs correspond to tuples and tables in ORDBMSs. In the context of ORDMBSs. the terms object and tuple are interchangeable.
As in OODBMS, it is possible to use type constructors orthogonally to construct arbitrarily complex types. It is further possible to use references from one type to another type. and thus create shared objects in the database Let us return to the example in Section 11.1 and illustrate the definition of the corresponding tuple types, other than PersType. Note the use of the setof constructor (as a constructor of sets) and ref (to denote a reference to one type from another).
create row type FactoryType( 
 
Name varehar(25), 
 
City varehar(7), 
 
NoOfEmployees integer)
create row type ManufacturerType( 
 
ConstrId ref(ManufacturerType), 
 
Name varehar(25), 
 
President ref(PersType), 
 
Factories setof(FactoryType))
create row type CarTypeParts( 
 
Motor char(10), 
    
ShockAbsorber char(5))
create row type AutoType(
 
RegistrationNumber char(10) primary key,
 
Model varehar{30),
 
Maker ref(ManufacturerType),
 
MechanicalParts CarTypeParts)

Note that the types FactoryType and CarTypeParts are used within the types ManufacturerType and AutoType without introducing the construct ref, and thus without the introduction of independent objects. In this way, we construct tables that include sub-tables (at schema level) and objects that include as components sub-objects (at instance level), by guaranteeing an arbitrary structural complexity.
Note also that in the definition of the tuple type ManufacturerType. the attribute ManufacturerId is a reference to ManufacturerType itself, that is. to the type that is currently being defined. In this case, Manufacturerld carries out the role of OID; the values for Manufacturerld are system-generated but they can be used in the queries in the same way as any other attribute and can carry out the role of key. If this reference mechanism is not explicitly used in the type definition, then the system generates one OID for each object, but OIDs cannot be accessed in the queries. Note moreover, that this use of identifiers can cause the presence of dangling tuples. Whenever references to OIDs are explicitly cancelled or modified by the queries, the system guarantees the referential integrity only of those references that are not explicitly modifiable by the users.
At this point, we can create tables for the concepts AUTOMOBILE and MANUFACTURER, which are included in the schema together with tables, PRESIDENT and DRIVER already created.

create table Automobile of type AutoType
create table Manufacturer of type ManufacturerType 
values for Manufacturer Id are system generated 
scope for President is Industrial

Note that the scope clause limits the possible values present in the attribute President of the type PersType to be a reference to the tuples belonging to the INDUSTRIAL table. If this clause were omitted, the values of the attribute President could be generic objects of the type PersType, present in any table that uses this type.

Hierarchies In SQL-3, we can define type and table hierarchies. Type hierarchies are used for extending previously defined types by adding new properties to them. For example, we can construct a tuple type VintageCarType by adding the attribute ManufactureYear, as follows:
create row type VintageCarType ( 
 
ManufactureYear integer) 
  
under AutoType
Table hierarchies are analogous to class hierarchies discussed in Section 11.1.4. Thus, all sub-tables have as type a sub-type of the table from which they inherit. In addition, for each object (tuple) present in a sub-table there must exist an object (tuple) in the tables at all of the hierarchically higher levels.

The definition of VINTAGECAR as a sub-table of AUTOMOBILE, which requires an under clause in the context of the creation of the sub-table, can happen in two ways. It is possible to refer to the sub-type defined previously, as follows:

create cable VintageCar of type VintageCarType under Automobile
Alternatively, we can define independently the type of VINTAGECAR in the context of type of AUTOMOBILE, assumed implicitly, as follows:

create Cable VintageCar(
 
ManufactureYear integer) 
 
under Automobile
The only difference consists of the fact that VintageCarType is a reusable type in the first case and non-reusable, because not named, in the second case.

Abstract types and functions As well as tuple types, we can define generic abstract types, which can be used as components in the construction of tuple types. We can also provide the abstract types with a set of functions, which can be defined in SQL-3 or in an external programming language. The functions carry out the same role as the methods, discussed in Section 11.1.3, and in particular include standard forms for the constructor, accessors to the various attributes, and transformers. We can deny access privileges on the methods, obtaining the effect of encapsulating the data.

Let us look at the definition of the abstract data type CarTypeParts, which also includes the functions equals and greater than to express, respectively, equality and comparison between two parts.

create type CarTypeParts( 
 
Motor char (10), 
 
Power integer, 
 
Cylinders integer,
 
equals EqualPower, 
 
greater than GreaterPower)
The functions defined in this way can be expressed in SQL-3 or in an external programming language. In any case, their definition requires the definition of a signature (which, as in Section 11.15, identifies the input and output parameters) and then their implementation. For the signature, a functional notation is used, in which there is only one output parameter, and the input parameters are enclosed within brackets. Each input parameter has a name and a type. The output parameter has no name and can be omitted; if the function has an output type, this is indicated after the returns clause.

Below, we will look at the two functions introduced above for the type CarTypeParts. The two implementations are self-explanatory. In that they are limited to a boolean expression constructed using the values of the attributes of the two parameters. We use a dot notation to extract the attribute of a table referenced by a variable, as in SQL-2. Note that, based on the arbitrary definitions given, two cars can be simultaneously either equal or ordered by the comparison; this example shows that the meaning of the functions is really dependent on the code of the method.

create function Equal Power(:pl CarTypeParts, 
 

:p2 CarTypeParts) 
 
retums boolean;
 
returns (:pl.Power = :p2.Power)
create function GreaterPower(:p1 CarTypeParts. 
 

:p2 CarTypeParts) 
 
returns boolean:
 
returns ((:p1.Power > :p2.Power) or 
 

((:p1.Power = :p2.Power) and 
 

(p1.Cylinders > :p2.Cylinders)))
Finally, let us look at how reference is made in SQL-3 to an external implementation, using a specific programming language.
create function Equal Power(:pl CarTypeParts, 
 

:p2 CarTypeParts) 
 
returns boolean as external name Myfile language C;
11.3.2 SQL-3 query language
The query language SQL-3 is compatible with SQL-2. Thus, we can define 'standard' relational queries on the 'standard' tables. For example, the following query is written in SQL-2 and compatible with SQL-3:
select Name 
from Person 
where TaxCode = 'TRE SFN 56D23 S541S'
Below, we will look briefly at two new features of SQL-3, called deferencing and double dot notation, which allow access either to related objects or to component sub-objects. We will also look at the operations for nesting and unnesting, which enable the modification of complex object structures.

Deferencing Navigation among the references between types in SQL-3 requires the deferencing operator. This operator allows access from a source object x to an object y referenced in x as an object-valued property A in the following way: x -> A. The following example shows the use of the deferencing operator to access the value of the attribute Name of the object of the INDUSTRIAL table from objects of the MANUFACTURER table. In particular, it accesses those objects that satisfy the predicate Name = 'Fiat'.
select President -> Name 
from Manufacturer 
where Name = 'Fiat'
In SQL-3 the attributes of types OID can be used explicitly in queries, and in particular can be compared by the equality operator with the references to tuples of the same type. The above query can thus be expressed as follows:

select Name
from Manufacturer, Industrial
where Manufacturer.name = 'Fiat'
           and Manufacturer.President = Industrial.Manufacturerld

The query constructs a join between the tables MANUFACTURER and INDUSTRIAL, in which the attribute PRESIDENT of the first table is compared with the identifier of the second table.
Double dot notation SQL-3 does not use the deferencing operation for accessing sub-components, but rather it introduces a new double dot operator. If an object x contains a sub-object y with attribute A. access to A happens by means of the expression x..A. The following example illustrates the use of double dot to access the Motor attribute of the sub-object MechanicalParts of cars. Note also the use of deferencing for access from an automobile to its manufacturer and from the manufacturer to the name of its president.

select Maker -> President -> Name 
from Automobile
where MechanicalParts..Motor = 'XV154'
Nesting and unnesting We have seen that the SQL-3 model allows the construction of arbitrarily complex data from the structural point of view. The SQL-3 query language allows the building of query results that have different structures with respect to those supported in the schema, by means of the two operations of nesting and unnesting.

Unresting (or flattening) is carried out by simply extracting a 'flat’ relational structure by omitting some of the original type constructors (such as setof). For example, the next query shows the extraction of the pairs of names, manufacturer and cities of automobile developers. Flattening is obtained by assigning a structured attribute to a variable.

select C.Name, S.City
from Manufacturer as C, C.Factory as S
In contrast. nesting is created by using the group by operator, which constructs (as in SQL-2 and OQL) partitions of equal value on the grouping attribute. In SQL-3, it is possible to extract the set of values present in a partition, and this causes the construction of a nested result.

select City, set(Name) 
from Manufacturer 
group by City
11.3.3 The third generation database manifesto
To conclude this section on ORDBMSs, we must remember the 'third generation database manifesto', an article that represents the ORDBMS 'reply' to the OODBMS manifesto. The article defines the third generation database as a natural evolution of relational databases, which in their (urn had replaced hierarchical databases and network databases, that is, the 'first generation' of DBMSs The demand for a 'change of generation' is due to the necessity for supporting complex data and functions within the DBMS.

The article begins with three basic assumptions: third generation systems must be able to manage complex objects and rules, be compatible with second generation systems (that is, pure relational databases) and be open to interaction with other systems. In particular, the second assumption relating to the compatibility between second and third generations sets this manifesto against that of the OODBMS manifesto. The article then presents a series of proposals, many of which agree with those mentioned in the OODBMS manifesto. We can list the most important ones.

20. A third generation DBMS must have a rich type system, which must include orthogonal constructors for arrays, sequences, records and sets.

21. A third generation DBMS must allow generalization hierarchies among types, possibly also with multiple inheritance.
22. Functions (including procedures and methods) are useful characteristics, especially when accompanied by encapsulation.

23. It makes sense for a system to allocate OIDs to single objects if a primary key is not available among the attributes defined by the user. Otherwise, it is better to resort to key attributes for the identification of objects.

24. Active rules (triggers) and passive rules (integrity constraints) will become an essential component of third generation DBMSs.

25. Independently of how much this is desirable. SQL is the reference language for DBMSs (it is a 'communication language for intergalactic dataspeak').
Discussing the merits of the third generation manifesto, written in 1990, is difficult. Nevertheless, we can at least state that the last 'prophecy' has been confirmed in the last decade relating to SQL. In spite of the success of OQL, SQL remains clearly the most widespread language in commercial databases.

11.4 Multimedia databases
In recent years, there has been an increasing demand for the management, along with alphanumeric data, of other data that represents documents, images, video and audio, and which are generically known as 'multimedia data'. By 'multimedia database' we mean a system with the capacity to store, query and show multimedia data. In this chapter, we discuss specific aspects of multimedia data management, by regarding multimedia data as particular types of data, whose efficient management requires specific abstractions. However, multimedia data can also be managed by relational databases.

11.4.1 Types of multimedia data
We will begin with an analysis of the characteristics of the main types of multimedia data: images, audio, video, documents and annotations.

Images The demand for the storage of images within objects, often described by associated alphanumeric information, is increasingly widespread. Databases of images are used in the clinical field, where for example, each patients X-rays are stored along with the patients clinical records; police departments all over the world exchange detailed reports of wanted criminals, which contain images of their faces; estate agencies and realtors illustrate the houses on sale using photos; descriptions of tourist resorts include pictures. The main difficulty in the management of images is the high number of bits necessary for their storage in binary form. To reduce this number, standard formats are used. These include GIF, JPEG, TIFF and PNG which allow image representation in compressed form.

Audio Audio data can contain conversations, music and other sounds (for example 'audio clips', which are associated with the use of commands on the personal computer). An audio signal is typically segmented into small temporal frames within which the signal is presented more or less uniformly, that is. characterized by more or less constant .amplitude and frequency A large number of frames are required, however, to segment an audio recording in a way that guarantees good reproduction: for ten minutes of audio, up to 100,000 frames can be required. Thus, storage of audio recordings also requires use of compression techniques.

Video Videos are collections of images (or frames) shown one after another by a reproduction device. A video can illustrate an historic event, a lesson, animals in action in their natural habitat, and so on. If the storage of images causes storage problems, videos exacerbate the problem, considering that a 60-minute video can contain more than 100,000 frames. There are several standards for video management (MPEG-1, MPEG-2, MPEG-4), which use different levels of compression. For example, MPEG-1 is of insufficient quality to guarantee television reproduction, MPEG-2 makes this possible by increasing the video quality (but also requires a greater number of bits) and MPEG-4 further improves the quality, allowing high-definition television reproduction.

Documents Documents are made up of text and images, presented using a precise format. For example. the page of a newspaper, or the home page of the authors of this book or a business letter written on headed paper and signed by the author, are examples of documents. The so-called 'digital libraries' are intended lo store millions of books and other documents, and to make them available on the Internet. For the construction of documents, mark-up languages such as HTML, XML or SGML can be used (see Chapter 14).
Annotations Finally, annotations are items of free text, sometimes even hand-written, which are added to other multimedia data for specific purposes (usually for the convenience of the writer, or for linking one document to another). Each annotation has personal characteristics, so in the management of annotations the user assumes a controlling role. Thus, the user decides, for example, whether annotations are to be accessible to other users or kept private.
11.4.2 Queries on multimedia data
While the coding of multimedia data is a general problem, the ability to query large amounts of multimedia data is a more specific problem of multimedia databases. In this section, we will look at some classic examples of querying applied to multimedia data. dealing more with their formulation than with the description of techniques for computing the result.
For example, a query to an arehive of images can aim at the extraction of images with certain characteristics. We might need to find all the lung X-rays showing signs of bronchial pneumonia; or the individuals who most resemble the identikit picture transmitted by the police investigating a bank robbery; or all the Renaissance paintings of Madonna and Child stored in the Louvre. If the seareh for an image based on its characteristics already seems hard, it is even more difficult to extract audio signals or videos based on particular patterns. For example, suppose we want to find all the music of Wagner in which the same theme occurs or the video sequences in which there appear goals scored by the Brazilian national soccer team. In these cases, the pattern must be reconstructed by operating on multiple frames or temporal windows. In all of the above cases, the query must initially exploit the structural information associated with multimedia data, in order to extract a few multimedia objects. After this it will be necessary to evaluate, for each extracted object, its 'similarity' to the criteria requested.

In general, it is possible to select a multimedia object only in probabilistic terms. It will therefore be possible to present the result of a query starting from data that has the highest probability of satisfying the request, by setting a given probability threshold. Adaptive techniques allow the user to guide the search.

11.4.3 Document search
The most frequently occurring case of query on multimedia data is the extraction of documents that contain particular textual information. In this case, it is possible to use well-known and efficient techniques of information retrieval. To get an idea of the efficiency of such methods, it is sufficient to consider the quality of the 'search engines' on the Web, which find sites based on a few keywords (for example, all the Web sites that contain the word 'Ferrari').

Information retrieval queries are typically composed by means of keywords, related by boolean operators. Text matching techniques are based on the capacity to extract useful information from a text in order to decide whether it is relevant to a query. This information is reduced to an optimized representation of the main keywords, present in the text, with an associated indication of their frequency of occurrence. To construct this information for a generic text, it is necessary to operate as follows.

·  Exclude irrelevant words from the text (articles, conjunctions, prepositions, etc.), which appear frequently but are not essential. These are known as 'slop words.'

·  Reduce similar words to a single keyword (also known as 'stemming'). For example, the words "inhabits", 'habitation', 'inhabited', 'inhabitant' are all linked to the unique concept of 'inhabit' and can thus be replaced by it.

·  Allocate its own frequency to each keyword, defined as the ratio between the number of occurrences of the word and the total number of words present in the text.

At this point, the search for texts that satisfy a user query is reduced to the search for a text in which the keywords proposed by the user appear, in a combination compatible with the user request, with highest frequency. To define the efficiency of the search better, two measures are defined: precision and recall. Let us suppose that for each document, we know a-priori whether it is relevant, that is, whether it should be part of the result of the query or not. Then:
·  precision indicates the number of relevant documents extracted as a percentage of the total extracted documents;

·  recall indicates the number of relevant documents extracted as a percentage of the total documents in the database.

A good search algorithm must try to take account of both these factors. Firstly, it must offer a good degree of precision, to present documents that are highly relevant. Secondly, it needs a good recall, to reduce the risk of omitting the documents that are most relevant to the user. Several techniques can be used for describing textual documents. Documents can be represented by using matrices, in which the rows and columns of the matrix represent respectively the documents and the keywords, and each element of the matrix represents the frequency of the keyword within the document.

Alternatively, we can represent the correspondence between keywords and documents by using inverted indexes. The indexes are organized as trees, containing at their intermediate nodes the keywords as illustrated in Section 9.5.5; leaves of the tree contain the identifiers of the documents corresponding to each keyword. Using these data structures, it is easy to extract the identifiers of documents that satisfy boolean conditions on keywords. For example, the intersection of two keywords is obtained simply by making an intersection of the sets of document identifiers. This is done by running through the index twice, with the two keywords selected by the user.

Other data structures first highlight the keywords of high frequency. For example, the signature of a document is a compact representation of the n keywords that appear in a document with highest frequency. Matching techniques are used for extracting the documents that respond to a given query by looking only at their signature: the signature can also be used to decide whether two documents are similar.

11.4.4 Representation of spatial data
Spatial data is used for describing the information present in a space of n dimensions, for example a geographical map (two-dimensional) or the project for a building under construction (three-dimensional). Spatial data management is a very specific application, which has recently acquired great importance. For this reason, it is often carried out by dedicated systems, called Geographic Information Systems (GIS).

The main problem of spatial data management is the selection of a data structure that allows the response to queries about the arrangement of data in the space. For example: extracting all the points of a map that are within a given distance from a particular point on the map; determining all the regions that are near to a given region; or determining the points of a map that are found along a line, and could represent the cities found along the course of a river. Obviously, GlSs can describe not only the arrangement of data in the space, but also the characteristics of each point, line or region of the space. For example, points that describe cities have other information, as well as their own geographical co-ordinates, such as the population and the height above sea-level. Regions are characterized, for example, by the prevalent type of agriculture, or by the average monthly rainfall per unit surface. Lines can represent rivers, roads or railways. Using GISs, it will be possible to express queries in which spatial aspects are involved. The efficient management of spatial data requires the information to be organized using special data structures, which allow efficient execution of the queries. In particular, various types of tree structures allow the management of collections of points (for example, the cities in a geographical map} and they respond efficiently to queries of the following type: 'Extract all the cities that are less than a certain distance from a determined point.' Each point is represented by a tree node. Each node includes its co-ordinates X and Y, an item of information specific to the node and the pointers to the nodes of the successors.

In 2-d tree organization (we Figure 11.5), each node has at most two successors In this organization, the root node represents an entire geographic zone, and each node sub-divides the geographic zone represented by it into two zones using a line, which goes through the point whose co-ordinates are stored with the node The line is horizontal or vertical according to whether the node is at an even or uneven distance in relation to the root. In Figure 11.5 A is the rout node. B and C its descendants, E the descendant of C, F the descendant of E and D the descendant of B. Looking at the bottom right corner of the figure, A divides the figure vertically, C horizontally, E vertically and F horizontally
In quadtree organization (see Figure 11.6), each node sub-divides the geographical zone that it represents into four zones, using two lines. horizontal and vertical, which pass through the point itself. Thus. each node has four successors, which represent the four quadrants. In Figure 11.6, A is the root node. B. C. D and E are its descendants. and F is a descendant of E. Each point subdivides the figure into four zones
Various commercial systems are specifically dedicated to the management of spatial data. The best known is ARC/INFO, which has a subsystem for the management of spatial data and can be integrated with the main relational databases. The Open GIS (OGIS) Committee is currently standardizing the format for the exchange of spatial data to allow interoperability between the various GIS products.

11.5 Technological extensions for object-oriented databases
Object-oriented databases use database management systems technology, described in Chapter 9 and Chapter 10, but introduce some rather important technological extensions.

11.5.1 Representation of data and identifiers

The first problem is presented by the representation of complex objects in secondary memory, that is, in the object servers. To store a hierarchy of classes using files there are two approaches. 
·  The horizontal approach consists of storing each object adjacently. In particular, all the instances of a same class are stored within the same file. Thus. we would have, for the example in Figure 11.2, a file for each of the classes AUTOMOBILE, SPORTSCAR, VINTAGECAR and VINTAGESPORTSCAR. Using this approach, access to a single object is particularly efficient. Conversely, the selection of objects based on their general properties is very laborious (for example, access to a generic automobile based on the attribute Colour requires access to four files).
·  The vertical approach consists of storing the same properties adjacently, breaking an object down into its components. This approach is also called 'normalized' in that it could be directly applied to the relational model. In this case, we again have a file for each of the four classes mentioned. However, the file automobile contains information about all the objects that are instances or members of the AUTOMOBILE class. The objects are reconstructed based on references between their components, so that to collect all the information about objects of the class VINTAGESPORTSCAR requires access to four files.

These solutions are similar to the various options of translation from the Entity-Relationship model to the relational model that we discussed for logical database design (see Chapter 7). The horizontal solution is more consistent with the object paradigm because it manages each object in a unitary manner. However, it presents problems when an object can be an instance of more than one class. It is possible to choose an intermediate solution as well, when this is suggested by the demands of a particular application.
The vertical solution can also be used for managing structural complexity (due to the use of type constructors). In this case, however, references between sub-objects must be created at the time of partitioning an object and cannot reuse the object identifiers allocated to the entire objects. In addition, system-generated identifiers or counters must be used for managing the extensions of sets, bags, and lists.

Documents and multimedia data are typically represented as binary objects (binary long objects or blobs) and stored in specific files (one for each binary object).
A characteristic problem of OODBMSs is the representation of OIDs, for which two solutions are given.

·  Use of a physical address, that is, including the physical allocation (block) of the object in the secondary memory. The obvious advantage is the speed of access. The disadvantage is the difficulty in moving an object to a different physical location. which can be managed using an indirect address, leaving a pointer to the new location in the page on which the object was initially stored.

·  Use of a surrogate that is, a value that is allocated unambiguously to an object using an algorithm (for example by allocating progressive numbers to objects, generated by a counter). An index or a hashing mechanism is then used to produce the physical address of each object out of the surrogate, thereby guaranteeing that objects can be accessed efficiently. In general, surrogates are unique in the context of specific extents, such as all the objects of a given class or at a given node of a distributed database. It is then necessary to generate surrogates by using distinct counters for each extent, and then add to the OID the indication of the extent to which the object belongs. OIDs can be large: in many distributed system implementations based on the standard CORBA, which we will see later, they can be as large as 64 bytes.

11.5.2 Complex indexes
In object systems, it is important to allow efficient access to path expressions for efficient execution of queries and programs. To this end, complex indexes are developed for object-oriented databases.

Suppose that for the database in Figure 11.2, a CITY class can be reached from the FACTORY class, using the Name attribute. Consider a complex path expression:

X.Maker.Factories.City.Name

To carry out a query or a program that uses this path. we must find automobiles which are linked to cities with given values, such as 'London', 'Boston', etc., by going along the paths connecting City to AUTOMOBILE in the schema. In this way, we find the objects of the class Al/TOMOBILE that satisfy the predicate:
X.Maker.Factories.City.Name = 'London' 
Complex indexes that can be defined in an OODBMS are of different types.

·  A multi-index organization guarantees the presence of an index for each property used along the path expression. Thus, proceeding backwards;

· an index from the strings corresponding to names of cities to the objects in CITY;
· an index from the objects in CITY to the objects in FACTORY;
· an index from the objects in FACTORY to the objects in MANUFACTURER;
· an index from the objects in MANUFACTURER to the objects in AUTOMOBILE.
The use of the four indexes recalls the nested-loop method for the execution of joins (Section 9.6.2).
·  A nested index directly connects the values that appear at one end of the chain to the objects that are at the other end of the chain. Thus, from the constant value 'London' one immediately makes access to all the objects of the class automobile that satisfy the predicate.
·  Finally an index path expression allows us to navigate from the values that appear at the end of the path to the objects of all the classes that appear along the path. Thus, from a city name it is possible to navigate back​wards to CITY objects, FACTORY objects, MANUFACTURER objects or AUTOMOBILE objects.

Indexes introduced in this way are created with B+ trees of a particular structure. In managing these trees, we must take into account the creation and cancellation of intermediate objects, which can change the structure of the indexes.

11.5.3 Client-server architecture
In object-oriented databases too, objects are stored on servers dedicated to data management. As object-oriented database applications were developed in the nineties, object-oriented systems adopted the client-server architecture from their early development. However, especially in OODBMS, the paradigm for interaction between the client and the server is different, because clients execute application programs written in an imperative language. Thus, in OODBMSS, query languages such as SQL are replaced by imperative programming. We recall from Section 10.1 that the client-server separation of work induced by the use of SQL is one of the main reasons for the success of client-server architectures within the context of relational systems.

This paradigm change brings a different sub-division of tasks in client-server architecture, peculiar to object-oriented databases, in which the client system imports entire objects. In this way, the application programs can be carried out directly in the client system buffers. Imagine for example an engineering application, in which the user designs a mechanical component or a chip. Once the entire object is loaded on the workstation, the user no longer interacts with the object server for the duration of the design session. If, on the other hand, the objects remained in the server buffer during the design session, there would be laborious interactions between client and server, possibly causing overloading of the input/output channels and of the network.

In order to facilitate the input/output of objects, many systems use the same representation in the main memory as the objects existing in the secondary memory, and thus transfer from the servers to the client entire pages of memory. A typical optimization that takes place at the time of loading of objects from the secondary memory to the main memory buffers is the conversion of OIDs The OIDs are changed from (complex) pointers to secondary memory into (simple) pointers to main memory. This operation takes the name pointer swizzling, and is justified by the greater efficiency and compactness of the main memory addresses compared to those of the secondary memory. In general, the pointer is rewritten exactly above the OID, leaving the page structure unaltered. To optimize the conversion process, the conversion from OID to main memory pointer can be at the first time when an application really uses the pointer. At the time of reloading of the objects in the secondary memory, it is necessary to carry out the reverse conversion. Suitable data structures on the client maintain the correspondence between pointers in the main memory and the original OID value.
11.5.4 Transactions
On a transactional level, object-oriented databases offer, in addition to the classic ACID transaction properties, also less restrictive mechanisms, which facilitate the co-operation among users. Let us look briefly at the requirements of some of these mechanisms.

·  In concurrency control, check out operations are normally defined. These allow the loading of entire objects to the workstation on which a user is operating, at the same time allowing other users to access the object on the database. In this way, the user may work on an object for long work sessions, at the same time allowing other users to have access to the object present on the server. Obviously, the dual operation of check-in, in which the object is returned to the server, requires the co-operation with the other users, who must be informed of the changes to the object.

·  Another method for guaranteeing concurrent co-operative processes is based on the use of versions, that is, various copies of the same object at different times. In this case, it is also possible to define relations between objects that represent the evolution constraints between different versions. This problem is particularly critical in the context of CASE tools, in which it is necessary to allow for and to document the evolution of software and to guarantee that various versions constitute a unique logical unit (for example, with respect to the process of compilation and linking).
·  In some applications, long transactions can be expected. An example is the transaction that occurs between the check-in and check-out of an object, which can be transferred to a design workstation for days at a time; yet, from the viewpoint of the other users, the changes constitute a unique, long transaction.
·  Finally, transactions can be composed of nested transactions. This approach, which can also be developed for relational systems, occurs when a client process must create a unique task by communicating with various distinct servers that do not allow the use of global transactions. In this case, the global atomicity is obtained by means of co-ordination between several, low-level, acid transactions. The most typical example is the organization of a trip, which might require access to a hotel booking system, a car hire company and the booking systems of various airlines. Each insertion or cancellation operation on one of the DBMSs is managed like an ACID transaction. Now, consider the case where it is impossible to book one of the resources, but this is revealed only after the booking of many of the others. Then, the cancellation of the booking already confirmed takes place through compensating transactions, activated by the coordinator of the complex transaction- The global atomicity is guaranteed when all compensation activities terminate. Co-ordination of activities is under the responsibility of a complex transaction manager.
11.5.5 Distribution and interoperability: CORBA
The object-oriented programming paradigm is suggested for the construction of distributed and heterogeneous software systems. The modularity inherent in the separation between interface and implementation guarantees a level of transparency that can also hide the data distribution.

CORBA (Common Object Request Broker Architecture) is an emerging architecture for the management of distributed objects, proposed by the Object Management Group (OMG) in 1991 (version 1.1), and then updated in 1995 (version 2.0).  The main objective of CORBA is to guarantee interoperability of distributed objects, which client processes can access by invoking their methods. The clients do not need to know the location of objects or the language in which the methods are implemented; it is sufficient to know their interfaces. Object interfaces are defined by means of an interface definition language, IDL. IDL uses the same syntactic conventions as C++ and does not place any particular emphasis on data management.

Nonetheless, it is compatible with ODL. the language proposed by ODMG; for the standardization of OODBMS interfaces, which we saw in Section 11. 21 The descriptive power of IDL is strictly included in the descriptive power of ODL. The CORBA architecture consists of three elements.

·  The client sends requests about objects. The interfaces for using the objects written in IDL are available to the client in the form of libraries. It is possible to have both static interfaces (precompiled), called stubs, which define a fixed way in which the clients invoke the services, or dynamic interfaces, which allow an invocation of services at execution time. The clients can also access services provided by request managers, described below.

·  The request manager or object request broker (ORB) receives the request (or objects by the clients and is responsible for identifying the objects in a distributed system. The ORB prepares the implementation of the objects to receive requests and to manage communications; after a client request it transfers control to the object adaptors or directly to the implementation of the objects. In case of error, the orb transmits exceptions to the clients. The ORB also offers services to clients and object implementation, described below.

·  The object adaptor offers services for access to object implementations, including the activation and de-activation of objects and of their implementation, and the recording of new implementations.
·  Object implementation provides object semantics, using given data structures and method implementations. These are accessible using a skeleton written in IDL. An implementation can, in turn, require services made available by the object adaptor or the orb.
Figure 11.7 illustrates the interactions among clients, request managers, adaptors and object implementations, according to CORBA architecture. Note that the modules with rounded corners refer to applications (clients and object implementations), while all the other modules are part of the CORBA architecture. The dynamic invocation libraries and the stubs of static descriptions are linked to the client codes, while the IDL skeletons are linked to the object implementation codes. The ORB service interface is identical for all the ORB implementations, while each type of object has a given stub and a skeleton. Finally, there can be various object adaptors, each presenting the same object from a different viewpoint. The main advantage of this architecture is the ability of clients to connect to remote objects without knowing the details about their location and implementation. Clients interact with ORBs provided by different vendors and are not sensitive to object evolution as long as objects do not change their interfaces: of course, implementations must continue to provide the correct application semantics Another advantage of invocation of methods in CORBA is that IDL supports generalization hierarchies, and thus makes it possible for object methods to be inherited. In version 2.0 of the standard, a series of services has been defined, the creation of which is still proceeding. We list a few of the most important services.

·  Object services guarantee object functions. including durability, transactions. concurrency control,   privacy, time management and notification of events. These services are presented as components described in IDL  and extend the functionality of ORB systems.
·  Common facilities define rules for the use of objects. They specialize in four application domains. The domains are:

· user interfaces;

· information management (including mechanisms for the management and exchange of documents);

· system management (including installation, configuration and repair of distributed objects);

· task management, to support the co-ordination of tasks (workflow) and the organization of task-performing agents.

OMG is continuously asking for new services to be proposed and then developed, through a mechanism of public dissemination. From the transaction point of view, CORBA adheres to the X-OPEN DTP standard, described in Section 10.5.2. Clients become transactional by invoking appropriate methods that are part of a transactional service added to CORBA 2.0, which includes the start and the termination of the transactions. These methods guarantee the ACID properties of the transactions and manage the logs and locks as described in Chapter 9 and Chapter 10.
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11.7 Exercises
Exercise 11.1 Define a class GEOMETRICFIGURE and three subclasses SQUARE, CIRCLE and RECTANGLE. Define a method Area, the implementation of which in GEOMETRICFIGURE returns the value zero, while in the subclasses it is evaluated as a function of the properties of the given sub-classes. Show the invocation of the method by a program that scans a list of geometric figures of an arbitrary nature.
Exercise 11.2 Define a data dictionary of an object-oriented database. Suggest the introduction of classes and hierarchies concerning various concepts of an object-oriented schema, classes, atomic types, types structured using various constructors, generalization hierarchies and methods with their input/output parameters. Populate the data dictionary with data that describes part of the schema dealing with the management of automobiles, described in Figure 11.2. Then think of a query that allows, for  example, the extraction of a list of the classes and methods with covariant redefinition of the output parameters
Exercise 11.3 Consider the following schema of an O2. object-oriented database:
add class City
 
type tuple (Name: string, 
 

Nation: string, 
 

Monuments: set (Monunent), 
 

Hotels: list(Hotel)):
add class Hotel
 
type tuple (Name: string,
 

Address: tuple(Street: string, 
 


City: City, 
 


Number: integer, 
 


PostCode: string);
 

Stars: integer, 
 

Features: list(string));
add class Place
 
type tuple(Name: string,
 

Photograph: Bitmap, 
 

Address: tuple(Street: string, 
 


City: City, 
 


Number: integer, 
 


PostCode: string);
 

ThingsToSee: set(TouristService));
add class Monument inherits Place 
 
type tuple(ConstructionDate: date,
 

ClosingDays: list(string), 
 

AdmissionPrice: integer, 
 

Architect: Person);

add class TouristService
 
type tuple(Name: string,
 

Places: Set( Place), 
 

Cost: integer);
add class Theatre inherits Monument 
 
type tuple (ShowDays: list(date))

add class TheatreShow
 
type tuple(Title: string, 
 

Place: Theatre,
 

Character: Person, 
 

Rehearsals: set(date)) ;

add class Concert inherits TheatreShow 
 
type tuple(Characters: Director,
 

Orchestra: set(Musicians));

add class Person
 
type tuple(Name: string,
 

TaxCode: string, 
 

Nationality: string);

add class Director inherits Person
 
type tuple (Appointment: Theatre); 
add class Musician inherits Person
 
type tuple(Instruments: set(string));

26. Graphically describe the above schema as illustrated in Figure 11.2.
27.  Define the initialization methods of the classes PLACE, MONUMENT and THEATRE, reusing the methods while descending along the generalization hierarchy.
28. Which property of the schema is redefined in a covariant way?
29. Define the signature of the initialization method of a theatre show and then refine the signature in a covariant way in the input parameters. whenever the show is a concert.
30. Give an example of invocation of the method defined above, in which it is not possible to verify its accuracy at the time of compilation.

Exercise 11.4 Describe the schema of the object-oriented database of Exercise 11.3 using the standard ODMG-93. Describe it graphically using the method illustrated in Figure 11.4
Exercise 11.5 With reference to the object-oriented database schema in Exercise 11.3, write the following queries in OQL:

31. Extract the names of the four star holds in Como. 
32. Extract the names and costs of tourist services offered in Paris
33. Extract the names of the five star hotels in the cities in which concerts conducted by Muti are planned.
34. Extract the names of the monuments in Paris created by Italian arehitects.
35. Extract the tourist services on offer partly in Paris and partly in another city.
36. Extract the names of the artistic directors of a theatre where no concerts are presented.
37. Extract the title of the concert, conductor, musicians and instruments used by each musician in the concerts of 12-2-99 in Milan.
38. Extract the cities having more than 10 monuments and fewer than five hotels.
39. Extract the names of the French arehitects who are also musicians.
40.  Extract the total number of concerts conducted by Muti in either Italian or French theatres.
41.  Extract the total number of concerts given in each Italian theatre.
42. Classify the monuments in Paris according to the date of construction. Use the classifications: 'Renaissance' (from 1450 to 1550), 'Baroque' (from 1550 to 1800), 'Imperial' (from 1800 to 1900). 'Modern' (from 1900 to today), and count the number of elements in each class.
Exercise 11.6 Use the SQL-3 syntax to describe the object model presented in Exercise 11.3 (represent O2 lists as sets).
Exercise 11.7 Considering the SQL-3 database schema introduced in the previous exercise, express the following queries in SQL-3.

43. Retrieve the names of the cities having 'Liechtenstein’ as nation.
44. Retrieve the names of the musicians playing in the concerts directed by Karajan.
45. Retrieve the names of the monuments in London constructed in the 17th Century and closed on Mondays.
46. Retrieve the names of the directors who perform at theatres different from those to which they are affiliated.

47. Retrieve, for each theatre, the titles of all of the concerts that are planned for the year 2000.
Exercise 11.8 Build a 2d-tree and quadtree representation of the sequence of bi-dimcnsional points: A(5,4), B(3,3) C(6,2), D(2,2), E(4,6), F(1,1). G(7,5)
How many intermediate nodes appear, in the two representations, between A and F and between A and G?

Exercise.11.9 With reference to the object-oriented database schema of Exercise 11.3, indicate a choice of complex indexes for the efficient management of the path expressions that are most used by the queries of Exercise 11.5.
Figure 11.1 Relationship between values, objects, types and classes.





Figure 11.2 Diabase schema for the description of automobiles.





Figure 11.3 Representation of objects belonging to the classesautomobile. SfORTSCAR. ViNTAGECAR and ViNTAGESPORTSCAR.





Figure 11.4 Object -oriented database schema tor the description of c«irs according to the ODMG-93 model.





Figure 11.5 A 2- d tree.





Figure 11.6 A quadtree.





Figure 11.7 Interaction among the four components of a corba arehitecture.








� Note that the example is not very meaningful, as it first creates and then modifies the Price property, causing its immediate increase.





11.27

