Chapter 3
Relational Algebra and Calculus




3
Relational algebra and calculus
We have seen in the previous chapters that information of interest to data management applications can be represented by means of relations. The languages for specifying operations for querying and updating the data itself constitute, in their turn, an essential component of each data model. An update can be seen as a function that, given a database, produces another database (without changing the schema). A query, on the other hand, can also be considered as a function that, given a database, produces a relation. So, in order either to interrogate or to update the database, we need to develop the ability to express functions on the database. It is important to learn the foundations of query and update languages first, and then apply those foundations when studying the languages that are actually supported by commercial DBMSs.
We will look first at relational algebra. This is a procedural language (that is, one in which the data retrieval functions are specified by describing the procedure that must be followed in order to obtain the result). We will illustrate the various operators of the algebra, the way operators can be combined to form expressions, and the means by which expressions can be transformed to improve efficiency. We will also describe the influence that null values have on the relational algebra, and then how a query language can be used to define virtual relations (also known as views), which are not stored in the database.
Then, we will give a concise presentation of relational calculus, a declarative language, in which the data retrieval functions describe the properties of the result, rather than the procedure used to obtain it. This language is based on first order predicate calculus and we will present two versions, the first directly derived from predicate calculus and the second that attempts to overcome some of the limitations of the first.

We will conclude the chapter with a brief treatment of Datalog, an interesting contribution from recent research, which allows the formulation of queries that could not be expressed in algebra or in calculus.

The sections on calculus and Datalog can be omitted without compromising the understanding of the succeeding chapters.

In the next chapter, dedicated to SQL, we will sec how it can be useful, from the practical point of view, to combine declarative and procedural aspects within a single language. We will also see how updates are based on the same principles as queries.

3.1 Relational algebra

As we have mentioned, relational algebra is a procedural language, based on algebraic concepts. It consists of a collection of operators that arc defined on relations, and that produce relations as results. In this way, we can construct expressions that involve more than one operator, in order to formulate complex queries. In the following sections, we examine the various operators:

·  first, those of traditional set theory, union, intersection, difference;
·  next, the more specific ones, renaming, selection, projection;
·  finally, the most important, the join, in its various forms, natural join, cartesian product and theta-join.
3.1.1 Union, intersection, difference

To begin with, note that relations are sets. So it makes sense to define for them the traditional set operators of union, difference and intersection. However we must be aware of the fact that a relation is not generically a set of tuples, but a set of homogenous tuples, that is tuples defined on the same attributes. So, even if it were possible, in principle, to define these operators on any pair of relations, there is no sense, from the point of view of the relational model, in defining them with reference to relations on different attributes. For example, the union of two relations r1, and r2 on different schemas would be a set of heterogeneous tuples, some defined on the attributes of r1, and the others on those of r2. This would be unsatisfactory, because a set of heterogeneous tuples is not a relation and, in order to combine the operators to form complex expressions, we want the results to be relations. Therefore, in relational algebra, we allow applications of operators of union, intersection and difference only to pairs of relations defined on the same attributes. Figure 3.1 shows examples of applications of the three operators, with the usual definitions, adapted to our context:
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GRADUATES  

Number  Surname  Age ·   7274  Robinson  37   7432  O'Malley  39   9824  Darkes  38  

 

MANAGERS  

Number  Surname  Age   9297  O'Malley  56   7432  O'Malley  39   9824  Darkes  38  

 

GRADUATES      MANAGERS  

Number  Surname  Age   7274  Robinson  37   7432  O'Malley  39   9824  Darkes  38   9297  O'Malley  56  

 

GRADUATES      MANAGERS  

Number  Surname  Age   7432  O'Malley  39   9824  Darkes  38  

 

GRADUATES   -   MANAGERS  

Number  Surname  Age   7274  Robinson  37  

 

Figure 3.1.    Examples  of union, intersection and difference  

 the union of two relations r1(X) and r2(X). defined on the same set of attributes X, is expressed as r1 ( r2 and is also a relation on X containing the tuples that belong to r1 or to r2, or to both;

·  the difference of r1(X) and r2(X) is expressed as r1 - r2 and is a relation on X containing the tuples that belong to r1 and not to r2;
· [image: image3.emf] 

 PARENTS < - – FATHER (PATERNITY )       PARENTS < – MOTHER (PATERNITY )  

Parent  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Abraham  Ishmael   Eve  Cain   Eve  Seth   Sarah  Isaac   Hagar  Ishmael  

 

Figure 3.4   A union preceded by two  rcnamings  

 the intersection of r1(X) and r2(X) is expressed as r1 ( r2 and is a relation on X containing the tuples that belong to both r1 and r2.
3.1.2 Renaming

The limitations we have had to impose on the standard set operators, although justified, seem particularly restrictive. For instance, consider the two relations in Figure 3.2. It would be meaningful to execute a sort of union on them in order to obtain all the 'parent-child' pairs held in the database, but that is not possible, because the attribute that we have instinctively called Parent, is in fact called Father in one relation and Mother in the other.

To resolve the problem, we introduce a specific operator, whose sole purpose is to adapt attribute names, as necessary, to facilitate the application of set operators. The operator is called renaming, because it actually changes the names of the attributes, leaving the contents of the relations unchanged. An example of renaming is shown in Figure 3.3; the operator changes the name of the attribute Father to Parent, as indicated by the notation Parent ( Father given in subscript of the symbol (. which denotes the renaming; looking at the table it is easy to see how only the heading changes, leaving the main body unaltered.

Figure 3.4 shows the application of the union to the result of two different names of the relations in Figure 3.2.
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PATERNITY  

 PARENTS < – FATHER (PATERNITY )  

Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Isaac  Jacob  

 

Parent  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Isaac  Jacob  

 

Figure 3.3   A renaming.    

Let us define the renaming operator in general terms. Let r be a relation defined on the set of attributes X and let Υ be another set of attributes with the same cardinality Furthermore, let AlA2...Ak and B1B2…Bk be respectively an ordering of the attributes in X and an ordering of those in Y. Then the renaming
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OFFENCE S    

Code  Date  Officer  Department  Registration   143256  25/10/92  567  75  5694 FR   9Θ7554  26/10/92  456  75  5694 FR   987557  26/10/92  456  75  6544 XY   630876  15/10/92  456  47  6544 XY   539856  12/10/92  567  47  6544 XY  

 

CARS    

Regi stration  Department  Owner  Address   6544 XY  75  Cordon Edouard  Rue du Pont   7122 HT  75  Cordon Edouard  Rue du Pont   5694 FR  75  Latour Hortense  Avenue Foch   6544 XY  47  Mimault Bernard  Avenue FDR  

 

OFFENCE S      CARS  

Code  Date  Officer  Department  Regtstration  Owner  Address   14325 6  25/10/92  567  75  5694 FR  Latour Hortense  Avenue Foch   967554  26/10/92  456  75  5694 FR  Latour Hortense  Avenue Foch   987557  26/10/92  456  75  6544 XY  Cordon Edouard  Rue du Pont   630876  15/10/92  456  47  6544 XY  Mimault Bernard  Avenue FDR   539856  12/10/92  567  47  6544 XY  Mimault Bernard  Avenue FDR  

 

Figure 3.12 The relations offences and CARS (from Figure 2.19) and their join  


contains a tuple t' for each tuple t in r. defined as follows: t' is a tuple on Υ and t'(Bi) = t(Ai) for i= 1,..., n. The definition confirms that the changes that occur are changes to the names of the attributes, while the values remain unaltered and are associated with new attributes. In practice, in the two lists A[A2…Ak and BlB2…Bk we indicate only those attributes that are renamed (that is. those for which Ai ( Bi. This is the reason why in Figure 3.3 we have written
(PARENT(FATHER (PATERNITY)

and not
[image: image5.emf] 

PATERNIT Y   MATERNITY    

Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Abraham  Ishmael  

 

Mother  Child   Eve  Cain   Eve  Seth   Sarah  Isaac   Hagar  Ishmael  

 

Figure 3.2   A meaningful but incorrect union  

ΡΑΤΕ R ΝΓΓΥ      MATERNITY   ??  

(PARENT,CHILD(FATHER,CHILD(PATERNITY)

Figure 3.5 shows another example of union preceded by renaming. In this case, in each relation there arc two attributes that are renamed and therefore the ordering of the pairs (Branch. Salary and so on) is significant.

3.1.3 Selection

We now turn our attention to the specific operators of relational algebra that allow the manipulation of relations. There are three operators, selection, projection and join (the last having several variants).

Before going into detail, note that selection and projection carry out functions that could be defined as complementary (or orthogonal). They are both unary (that is, they have one relation as argument) and produce as result a portion of that relation. More precisely, a selection produces a subset of tuples on all the attributes, while a projection gives a result to which all the tuples contribute, but on a subset of attributes. As illustrated in Figure 3.6, we can say that selection generates 'horizontal decompositions' and projection generates 'vertical decompositions'.
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EMPLOYEES   STAFF  

Surname  Branch  Salary   Patterson  Rome  45   Trumble  London  53  

 

Surname  Factory  Wages   Cooke  Chicago  33   Bush  Monza  32  

 

 LOCATION,PAY< - – BRANCH,SALARY ( EMPLOYEES)       LOCATION,PAY< - – FACTORY,WAGES (EMPLOYEES)  

Surname         Locatio n  Pay   Patterson  Rome  45   Trumble  London  S3   Cooke  Chicago  33   Bush  Monza  32  

 

Figure 3.5   Another union preceded by renaming  

[image: image7.emf]  A  Β  C    

 

A  Β     

 

selection    

projection  

Figure 3.6   Selection and projection are  orthogonal operators  

Figure 3.7 and Figure 3.8 show two examples of selection, which illustrate the fundamental characteristics of the operator, denoted by the symbol σ, with the appropriate 'selection condition' indicated as subscript. The result contains the tuples of the operand that satisfy the condition. As shown in the examples, the selection conditions can allow both for comparisons between attributes and for comparisons between attributes and constants, and can be complex, being obtained by combining simple conditions with the logical connectives ( (or), ( (and) and ((not).
More precisely, given a relation r(X), a prepositional formula F on X is a formula obtained by combining atomic conditions of the type ΑυΒ or Aυc with the connectives (, ( and (, where:

·  υ is a comparison operator (=, (. >. <. (,();

·  A and Β are attributes in X that are compatible (that is. the comparison υ is meaningful on the values of their domains);

· [image: image8.emf] 

EMPLOYEE S  

 Age <30      Salary>40 ( EMPLOYEE S )  

Surname  FirstName  Age  Salary   Smith  Mary  25  2000   Black  Lucy  40  3000   Verdi  Nico  36  4500   Smith  Mark  40  3900  

 

Surname  FirstName  Age  Salary   Smith  Mary  25  2000   Verdi  Nico  36  4500  

 

Figure 3.7   A selectio n .    

 c is a constant compatible with the domain of A.

Given a formula F and a tuple t. a truth value is defined for F on t:
Α υ Β is true on t if and only if t(A) is in relation ϋ with t(B) (for example, A = Β is true on t if and only if t( A) = t(B));

·  Α υ c is true on t if and only if t(A) is in relation υ with c;

·  F1 ( F2, F1 λ F2 and (F1 have the usual meaning. 
At this point we can complete the definition:

·  the selection (F(r) produces a relation on the same attributes as r that contains the tuples of r for which F is true.

3.1.4 Projection

[image: image9.emf] 

CITIZENS  

 PlaceOfBirth=Residence (CITIZENS)  

Surname  FirstName  PlaceOfBirth  Residence   Smith  Mary  Rome  Milan   Black  Lucy  Rome  Rome   Verdi  Nico  Florence  Florence   Smith  Mark  Naples  Florence  

 

Surname  FirstName  PlaceOfBirth  Residence   Black  Lucy  Rome  Rome   Verdi  Nico  Florence  Horence  

 

Figure3.8   Another selection •  

The definition of the projection operator is also simple: given a relation r(X) and a subset Y of X, the projection of r on Υ (indicated by (Y(r)) is the set of tuples on Υ obtained from the tuples of r considering only the values on Ϋ.
(Y(r)={t(Y) | t(r}

[image: image10.emf] 

EMPLOYEES    Surname , FirstName ( EMPLOYEE )  

Surname  FirstName  Department  Head   Smith  Mary  Sales  De Rossl   Black  Lucy  Sales  De Rossi   Verdi  Mary  Personnel  Fox   Smith  Mark  Personnel  Fox  

 

Surname  FirstName   Smith  Mary   Black  Lucy   Verdi  Mary   Smith  Mark  

 

Figure 3.9   A projection  

[image: image11.emf]  nor    F  Τ   U  U   Τ  F  

 

and  Τ  U  F   Τ  Τ  Υ  F   U  Υ  Υ  F   F  F  F  F  

 

or  Τ  Υ  F   Τ  Τ  Τ  Τ   Υ  Τ  Υ  Υ   F  Τ  Υ  F  

 

Figure 3.9 shows a first example of projection, which clearly illustrates the concept mentioned above. The projection allows the vertical decomposition of relations: the result of the projection contains in this case as many tuples as its operand, defined however only on some of the attributes.

Figure 3.10 shows another projection, in which we note a different situation. The result contains fewer tuples than the operand, because all the tuples in the operand that have equal values on all the attributes of the projection give the same contribution to the projection itself. As relations are [image: image12.emf] 

EMPLOYEES    Department,Head ( EMPLOYEE )  

Surname  FirstName  Department  Head   Smith  Mary  Sales  De Rossl   Black  Lucy  Sales  De Rossi   Verdi  Mary  Personnel  Fox   Smith  Mark  Personnel  Fox  

 

Department  Head   Sales  De Rossl   Personnel  Fox  

 

Figure 3.10 A projection with fewer tuples than operands  

defined as sets, they are not allowed to have tuples with the same values: equal contributions 'collapse' into a single tuple.

[image: image13.emf] 

r 1  

r 2  

Employee  Department   Smith  sales   Hack  production   Bfenchi  production  

 

Department  Head   production  Mori   sales  Brown  

 

2 1

r r



     

Employee  Department  Head   Smith  sales  Brown   Black  production  Mori   Bi anchi    production    Mori    

 

Figure 3.11 A natural join  

[image: image14.emf] 

OFFENCE S    

Code  Date  Officer  Department  Registration   143256  25/10/92  567  75  5694 FR   9Θ7554  26/10/92  456  75  5694 FR   987557  26/10/92  456  75  6544 XY   630876  15/10/92  456  47  6544 XY   539856  12/10/92  567  47  6544 XY  

 

CARS    

Regi stration  Department  Owner  Address   6544 XY  75  Cordon Edouard  Rue du Pont   7122 HT  75  Cordon Edouard  Rue du Pont   5694 FR  75  Latour Hortense  Avenue Foch   6544 XY  47  Mimault Bernard  Avenue FDR  

 

OFFENCE S      CARS  

Code  Date  Officer  Department  Regtstration  Owner  Address   14325 6  25/10/92  567  75  5694 FR  Latour Hortense  Avenue Foch   967554  26/10/92  456  75  5694 FR  Latour Hortense  Avenue Foch   987557  26/10/92  456  75  6544 XY  Cordon Edouard  Rue du Pont   630876  15/10/92  456  47  6544 XY  Mimault Bernard  Avenue FDR   539856  12/10/92  567  47  6544 XY  Mimault Bernard  Avenue FDR  

 

Figure 3.12 The relations offences and CARS (from Figure 2.19) and their join  

In general, we can say that the result of a projection contains at most as many tuples as the operand, but can contain fewer, as shown in Figure 3.10. Note also that there exists a link between the key constraints and the projections: (Y(r) contains the same number of tuples as r if and only if Υ is a superkey for r. In fact:

·  if Y is a superkey, then r does not contain pairs of tuples that are equal on Y and thus each tuple makes a different contribution to the projection;

·  if the projection has as many tuples as the operand, then each tuple of r contributes to the projection with different values, and thus r does not contain pairs of tuples equal on Y, but this is exactly the definition of a superkey.

For the relation EMPLOYEES in Figure 3.9 and Figure 3.10, the attributes Surname and FirstName form a key (and thus a superkey), while Department and Head do not form a superkey. Incidentally, note that a projection can produce a number of tuples equal to those of the operand even if the attributes involved are not defined as superkeys (of the schema) but happen to be a superkey for the specific relation. For example, if we reconsider the relations discussed in Chapter 2 on the schema

STUDENTS(RegNum, Surname, FirstName, BirthDate, DegreeProj)

we can say that for all the relations, the projection on RegNum and that on Surname, FirstName and BirthDate have the same number of tuples as the operand. Conversely, a projection on Surname and DegreeProg can have fewer tuples; however in the particular case (as in the example in Figure 2.16) in which there are no students with the same surname enrolled on the same degree program, then the projection on Surname and DegreeProg also has the same number of tuples as the operand.

3.1.5 Join

[image: image15.emf] 

PATERNITY    

MATERNITY  

Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Abraham  lshmael  

 

Mother  Child   Eve  Cain   Eve  Seth   Sarah  Isaac   Hagar  Ishmael  

 

ΡΑΤΕ R ΝΠΥ      MATERNITY    

Father  Child  Mother   Adam  Cain  Eve   Abraham  Isaac  Sarah   Abraharn  I shmael  Hagar  

 

Figure 3.13 Offspring with both parents.  

Let us now examine the join operator, which is the most important one in relational algebra. The join allows us to establish connections among data contained in different relations, comparing the values contained in them and thus using the fundamental characteristics of the model, that of being value-based. There arc two main versions of the operator, which are, however, obtainable one from the other. The first is useful for an introduction and the second is perhaps more relevant from a practical point of view.

Natural join The natural join, denoted by the symbol ((. is an operator that correlates data in different relations, on the basis of equal values of attributes with the same name. (The join is defined here with two operands, but can be generalized.) Figure 3.11 shows an example. The result of the join is a relation on the union of the sets of attributes of the operands: in the figure, the result is defined on Employee, Department. Head, that is on the union of Employee, Department and Department, Head. The tuples in the join arc obtained by combining the tuples of the operands with equal values on the common attributes, in the example the attribute Department: for instance, the first tuple of the join is derived from the combination of the first tuple of the relation r1 and the second tuple of r2: in fact they both have sales as the value for Department.

In general, we say that the natural join r1((r2 of r1(X1) and r2(X2) is a relation defined on X1X2 (that is, on the union of the sets X1, and X2), as follows:

r1(( r2= {t on X1X2 | exist t1 ( r1 and t2( r2 with t(X1) = t1 and t(X2) = t2} 
More concisely, we could have written:

r1 (( r2 = {t on X1X2 |  t1 ( r1 and t2( r2}

The definition confirms that the tuples of the result are obtained by combining tuples of the operands with equal values on the common attributes. If we indicate the common attributes as X1,2 (that is, X1,2 = X1 ( X2), then the two conditions t(X1) = t1 and t(X2) = t2 imply (since X1,2 ( X1 and X, 2 ( X2) that t(X1,2) = t1(X, 2] and t(X1,2) = t2(X1,2) and thus t1(X1,2) = t2(X1,2). The degree of the result of a join is less than or equal to the sum of the degrees of the two operands, because the common attributes of the operands appear only once in the result.
Note that often the common attributes in a join form the key of one of the relations. In many of these cases, there is also a referential constraint between the common attributes. We illustrate this point by taking another look at the relations offences and cars In the database in Figure 2.19, repeated for the sake of convenience in Figure 3.12 together with their join. Note that each of the tuples in OFFENCES has been combined with exactly one of the tuples of CARS: (i) at most one because Department and Registration form a key for CARS; (ii) at least one because of the referential constraint between Department and Registration in OFFENCES and the (primary) key of CARS. The join, therefore, has exactly as many tuples as the relation OFFENCES.
[image: image16.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1    r 2  

Employee  Department  Head   Black  production  Mori   White  production  Mori  

 

Figure 3.1 4 A join with 'dangling* tuples  

Department  Head   production  Mori   purchasing  Brown  

 

Figure 3.13 shows another example of join, using the same relations as we have already used (Figure 3.4) to demonstrate a union preceded by renamings. Here, the data of the two relations is combined according to the value of the child, returning the parents for each person for whom both are indicated in the database.
[image: image17.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1    r 2  

Employee  Department  Head      

 

Figure 3.15 An empty join .    

Department  Head   marketing  Mori   purchasing  Brown  

 

The two examples, taken together, show how the various relational algebra operators allow different ways of combining and correlating the data contained in a database, according to the various requirements.

Complete and incomplete joins Let us look at some different examples of join, in order to highlight some important points. In the example in Figure 3.11, we can say that each tuple of each of the operands contributes to at least one tuple of the result. In this case, the join is said to be complete. For each tuple t1 of r1, there is a tuple t in r1 (( r2, such that t(X1) = t1 (and similarly for r2). This property does not hold in general, because it requires a correspondence between the tuples of the two relations. Figure 3.14 shows a join in which some tuples in the operands (in particular, the first of r1 and the second of r2 do not contribute to the result. This is because these tuples have no counterpart (that is, a tuple with the same value on the common attribute Department) in the other relation. These tuples are referred to as dangling tuples.

There is even the possibility, as an extreme case, that none of the tuples of the operands can be combined, and this gives rise to an empty result (see the example in Figure 3.15).

In the extreme opposite situation, each tuple of each operand can be combined with all the tuples of the other, as shown in Figure 3.16. In this case, the result contains a number of tuples equal to the product of the cardinalities of the operands and thus,|r1| x |r2| tuples (where |r| indicates the cardinality of the relation r).

[image: image18.emf]  Employee  Project   Smith  A   Black  A   White  A  

 

Project  Head   A  Mori   A  Brown  

 

Employee  Project  Head   Smith  A  Mori   Black  A  Mori   White  A  Mori   Smith  A  Brown   Black  A  Brown   White  A  Brown  

 

Figure 3.16 A join with |r1 | X |r2 | tuples .    

r 1  

r 2  

r 1    r 2  

To summarize, we can say that the join of r1 and r2 contains a number of tuples between zero and | r1 | x | r2|. Furthermore:

· [image: image19.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1   LEFT  r 2  

Employee  Department  Head   Smith  sales  NULL   Black  production  Mori   White  product ion  Mori  

 

Department  Head   production  Mori   purchasing  Brown  

 

r 1   RIGHT  r 2  

Employee  Department  Head   Black  production  Mori   White  production  Mori   NULL  purchasing  Brown  

 

r 1   FULL  r 2  

Employee  Department  Head   Smith  sales  NULL   Black  production  Mori   White  production  Mori   NULL  purchasi ng  Brown  

 

Figure 3.17 Some outer joins  

 if the join of r1 and r2 is complete, then it contains a number of tuples at least equal to the maximum of | r1 | and | r2|;

·  if Χ1 ( Χ2 contains a key for r2, then the join of r1(X1) and r2(X2) contains at most | r1 | tuples;

· [image: image20.emf] 

EMPLOYEES  

PROJECTS  

Employee  Project   Smith  A   Blade  A   Black  Β  

 

Code  Name   A  Venus   Β  Mars  

 

 Project=Code  ( EMPLOYEES    PROJECTS )  

Employee  Project  Code  Name   Smith  A  A  Venus   Black  A  A  Venus   Black  Β  Β  Mars  

 

Figure 3.19  A cartesian product followed by a selection  

 if X1 ( X2 is the primary key for r2 and there is a referential constraint between X1( X2 in r1 and such a key of r2, then the join of r1(X1) and r2(X2) contains exactly |r1| tuples.

Outer joins. The fact that the join operator 'leaves out' the tuples of a relation that have no counterpart in the other operand is useful in some cases but inconvenient in others, given the possibility of omitting important information. Take, for example, the join in Figure 3.14. Suppose we are interested in all the employees, along with their respective heads, if known. The natural join would not help in producing this result. For this purpose, a variant of the operator called outer join was proposed (and adopted in the last version of SQL, as discussed in Chapter 4). This allows for the possibility that all the tuples contribute to the result, extended with null values where there is no counterpart. There are three variants of this operator: the left outer join, which extends only the tuples of the first operand, the right outer join, which extends those of the second operand and the full outer join, which extends all tuples. In Figure 3.17 we demonstrate examples of outer joins on the relations already seen in Figure 3.14. The syntax is self-explanatory.

N-ary join, intersection and cartesian product. Let us look at some of the properties of the natural join. (We refer here to natural join rather than to outer join, for which some of the properties discussed here do not hold.) First let us observe that it is commutative, that is, rl (( r2 is always equal to r2 (( r1. and associative. r1 (( (r2(( r3) is equal to (r1 (( r2}(( r3. Thus, we can write, where necessary, join sequences without brackets:
r1 (( r2 (( … rn      or        ((1nri
[image: image21.emf] 

EMPLOYEES  

PROJECTS  

Employee  Project   Smith  A   Blade  A   Black  Β  

 

Code  Name   A  Venus   Β  Mars  

 

EMPLOYEES    PROJECTS  

Employee  Project  Code  Name   Smith  A  A  Venus   Black  A  A  Venus   Black  Β  A  Venus   Smith  A  Β  Mars   Black  A  Β  Ma rs   Black  Β  Β  Mars  

 

Figure 3.18 A cartesian product  

Note also that we have stated no specific hypothesis about the sets of attributes Xt and X2 on which the operands are defined. Therefore, the two sets could even be equal or be disjoint. Let us examine these extreme cases; the general definition given above is still meaningful, but certain points should be noted. If X1 = X2, then the join coincides with the intersectionr,U,)
r1 (( r2(X1,)=r1(X1)(r2(X1) 
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Figure 3.20 A database giving examples of expressions  

since, by definition, the result is a relation on the union of the two sets of attributes, and must contain the tuples t such that t(X1)( r1 and t(X2) r2 If X1 = X2. the union of X1and X2 is also equal to X1, and thus t is defined on X1: the definition thus requires that t r1 and t r2, and therefore coincides with the definition of intersection.
The case where the two sets of attributes arc disjoint requires even more attention. The result is always defined on the union X1X2, and each tuple is always derived from two tuples, one for each of the operands. However, since such tuples have no attributes in common, there is no requirement to be satisfied in order for them to participate in the join. The condition that the tuples must have the same values on the common attributes is always verified. So the result of this join contains the tuples obtained by combining the tuples of the operands in all possible ways. In this case, we often say that the join becomes a cartesian product. This could be described as an operator defined (using the same definition given above for natural join) on relations that have no attributes in common. The use of the term is slightly misleading, as it is not really the same as a cartesian product between sets. The cartesian product of two sets is a set of pairs (with the first element from the first set and the second from the second). In the case here we have tuples, each obtained by juxtaposing a tuple of the first relation and a tuple of the second. Figure 3.18 shows an example of the cartesian product, demonstrating how the result contains a number of tuples equal to the product of the cardinalities of the operands.

Theta-join and equi-join. If we examine Figure 3.18, it is obvious that a cartesian product is, in general, of very little use, because it combines tuples in a way that is not necessarily significant. In fact, however, the Cartesian product is often followed by a selection, which preserves only the combined tuples that satisfy the given requirements. For example, it makes sense to define a Cartesian product on the relations EMPLOYEES and PROJECTS, if it is followed by the selection that retains only the tuples with equal values on the attributes Project and Code (see Figure 3.19).

For this reason, another operator is often introduced, the theta-join. It is a derived operator, in the sense that it is defined by means of other operators. Indeed, it is a cartesian product followed by a selection, as follows:

r1 ((F r2 = (F (r1 (( r2)

The relation in Figure 3.19 can thus be obtained using the theta-join:
 EMPLOYEES ((Project=Code (PROJECTS)
A theta-join in which the condition of selection F is a conjunction of atoms of equality, each with an attribute of the first relation and one of the second, is called equi-join. The relation in Figure 3.19 was obtained by means of an equi-join.

From the practical point of view, the theta-join and the equi-join are very important. This is because most current database systems do not take advantage of attribute names in order to combine relations, and thus use the equi-join and theta-join rather than the natural join. We examine this concept more thoroughly when we discuss SQL queries in Chapter 4. In fact SQL queries mainly correspond to equi-joins, while the natural join was made available only in the most recent versions of SQL.

[image: image23.emf]  Number  Name  Age   104  Luigi Neri  38   210  Marco Celli  49   231  Siro Bisi  50   252  Nico Bini  44   301  Steve Smith  34   375  Mary Smith  50  

 

Figure 3.21 The result of the  application of Expression 3.1 to the  database  in Figure 3.20.  

At the same time, we presented the natural join first because it allows the simple discussion of important issues, which can then be extended to the equi-join. For example, we refer to natural joins in the discussion of some issues related to normalization in Chapter 8.

Note also that the natural join can be simulated using renaming, equi-join and projection. Without going into too much detail, here is an example. Given two relations, r1(ABC) and r2(BCD), the natural join of r1 and r2 can be expressed by means of other operators in three steps:

·  renaming the attributes so as to obtain relations on disjoint schemas: (B’C’(BC(r)
·  equi-joining such relations, with equality conditions on the renamed attributes: r1 ((B=B’(C=C’ ((B’C’(BC(r))
·  concluding with a projection that eliminates all the 'duplicate' attributes (one for each pair involved in the equi-join): (ABCD(r1 ((B=B’(C=C’ ((B’C’(BC(r)))
3.1.6 Queries in relational algebra

In general, a query can be defined as a function that, when applied to database instances, produces relations. More precisely, given a schema R of a database, a query is a function that, for every instance r of R, produces a relation on a given set of attributes X, The expressions in the various query languages (such as relational algebra) 'represent' or 'implement' queries: each expression defines a function. We indicate by means of E(r) the result of the application of the expression E to the database r.

In relational algebra, the queries on a database schema R are formulated by means of expressions whose atoms are (names of) relations in R (the 'variables'). We conclude the presentation of relational algebra by showing the formulation of some queries of increasing complexity, which refer to the schema containing the two relations:

EMPLOYEES(Number, Name, Age, Salary), SUPERVISION(Head, Employee|
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Figure 3.22 The result of the  application of Expression 3.2 to the  database  in Figure 3.20.    

A database on such a schema is shown in Figure 3.20. The first query is very simple, involving a single relation: find the numbers, names and ages of employees earning more than 40 thousand. In this case, using a selection, we can highlight only the tuples that satisfy the condition (salary above 40 thousand) and by means of a projection eliminate the unwanted attributes:

(Number,Name,Age ((Salary>40(EMPLOYEES))
(3.1)
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Figure 3.24 The result of the application of Expression 3.4 to  the database  in Figure 3.20.    

The result of this expression, applied to the database in Figure 3.20, is shown in Figure 3.21.
The second query involves both the relations, in a very natural way: find the registration numbers of the supervisors of the employees earning more than 40 thousand:


(Head(SUPRVISION((Employee=Number((Salary>40(EMPLOYEES)))
(3.2)
The result is shown in Figure 3.22, referring again to the database in Figure 3.20.

Let us move on to some more complex examples. We begin by slightly changing the above query: find the names and salaries of the supervisors of the employees earning more than 40 thousand. Here, we can obviously use the preceding expression, but we must then produce, for each tuple of the result, the information requested on the supervisor, which must be extracted from the relation EMPLOYEES. Each tuple of the result is constructed on the basis of three tuples, the first from EMPLOYEES (about an employee earning more than 40 thousand), the second from SUPERVISION (giving the number of the supervisor of the employee in question), and the third again from EMPLOYEES (with the information concerning the supervisor). The solution intuitively requires the join of the relation EMPLOYEES with the result of the preceding expression, but a warning is needed. In general, the supervisor and the employee [image: image26.emf]  NameH  SalaryH   Marco Celli  60   Steve Smith  70   Mary Smith  45  

 

Figure 3.23 The result of the  application of Expression 3.3 to  the  database  in Figure  3.20.  

are not the same, and thus the two tuples of EMPLOYEES that contribute to a tuple of the join are different. The join must therefore be preceded by a suitable renaming. The following is an example:

(NameH,SalaryH((NumberH,NameH,SalaryH.AgeH(Number,Name.Salary,Age(EMPLOYEES)
((NumberH=Head
                                (SUPERVISION ((Employee=Number(EMPLOYEES)))

(3.3) 
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Figure 3.26 A relation with null values  
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MANAGERS  

Number  Surname  Age   9297  O'Malley  56   7432  O'Malley  39   9824  Darkes  38  

 

GRADUATES      MANAGERS  

Number  Surname  Age   7274  Robinson  37   7432  O'Malley  39   9824  Darkes  38   9297  O'Malley  56  

 

GRADUATES      MANAGERS  

Number  Surname  Age   7432  O'Malley  39   9824  Darkes  38  

 

GRADUATES   -   MANAGERS  

Number  Surname  Age   7274  Robinson  37  

 

Figure 3.1.    Examples  of union, intersection and difference  

The result is shown in Figure 3.23, again referring to the database in Figure 3.20.

The next query is a variation on the one above, requesting the comparison of two values of the same attribute, but from different tuples: find the employees earning more than their respective supervisors, showing registration numbers, names and salaries of the employees and supervisors. The expression is similar to the one above, and the need for renaming is also evident. (The result is shown in Figure 3.24.)

(Number,name,Salary,Numberh,nameH,SalaryH 
((Salary>SalaryH
((NumberH,NameH,SalaryH.AgeH(Number,Name.Salary,Age(EMPLOYEES)
               ((NumberH=Head(SUPERVISION ((Employee=Number(EMPLOYEES))))
 (3.4)
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Figure 3.4   A union preceded by two  rcnamings  

The last example requires even more care: find the registration numbers and names of the supervisors whose employees all earn more than 40 thousand. The query includes a sort of universal quantification, but relational algebra does not contain any constructs directly suited to this purpose. We can, however, proceed with a double negation, finding the supervisors none of whose employees earns 40 thousand or less. This query is possible in relational algebra, using the difference operator. We select all the supervisors except those who have an employee who earns 40 thousand or less. The expression is as follows:

(Number,Name(EMPLOYEES ((NumberH=Head
((Head(SUPERVISION) –
             ((Head(SUPERVISION ((Employee=Number((Salary ( 40(EMPLOYEES))))) 
(3.5)

The result of this expression on the database in Figure 3.20 is shown in Figure 3.25.

3.1.7 Equivalence of algebraic expressions

Relational algebra, like many other formal languages, allows the formulation of expressions equivalent among themselves, that is, producing the same result. For example, the following equivalence is valid where x, y and z are real numbers:

x x (y + z)=x x y + x x z

For each value substituted for the three variables, the two expressions give the same result. In relational algebra, we can give a similar definition. A first notion of equivalence refers to the database schema:

·  E1 (R E2 if Ε1(r) ( E2(r). for every instance of r in R. 
Absolute equivalence is a stronger property and is defined as follows:

·  E1 ( E2 if E1 (R E2, for every schema R.

The distinction between the two cases is due to the fact that the attributes of the operands are not specified in the expressions (particularly in the natural join operations). An example of absolute equivalence is the following:
πAB (σΛ>B(R)) (σΛ>B(πAB(R)) 
while the following equivalence

πAB(R1)(( πAC(R2) (R πABC(R1(( R2)
holds only if in the schema R the intersection between the sets of attributes of R1 and R2 is equal to A. In fact, if there were also other attributes, the join would operate only on A in the first expression and on A and such other attributes in the second, with different results in general.

The equivalence of expressions in algebra is particularly important in query optimization, which we discuss in Chapter 9. In fact, SQL queries (Chapter 4) are translated into relational algebra, and the cost is evaluated, cost being defined in terms of the size of the intermediate and final result. When there arc different equivalent expressions, the one with the smallest cost is selected. In this context, equivalence transformations are used, that is, operations that substitute one expression for another equivalent one. In particular, we are interested in those transformations that are able to reduce the size of the intermediate relations or to prepare an expression for the application of one of the above transformations. Let us illustrate a first set of transformations.

1. Atomization of selections: a conjunctive selection can be substituted by a cascade of atomic selections:

(F1(F2(E) ( (F1((F2(E))
where Ε is any expression. This transformation allows the application of subsequent transformations that operate on selections with atomic conditions.

2. Cascading projections: a projection can be transformed into a cascade of projections that 'eliminate' attributes in various phases:

(X(E) ( (X ((XY(E)
if E is defined on a set of attributes that contain Υ (and X). This too is a preliminary transformation that will be followed by others.

3. Anticipation of the selection with respect to the join (often described as 'pushing selections down'):

(F (El((E2) ( El(((F(E2)
 if the condition F refers only to attributes in the sub-expression E2.

4- Anticipation of the projection with respect to the join ('pushing projections down'); let E1 and E2 be defined on X1 and X2 respectively; if Y2 ( X2 and Y2 ( X1 ( X2 (so the attributes in X2 - Y2 are not involved in the join), then the following holds:

(X1(El (( E2) ( El (( (Y2(E2)
By combining this rule with that of cascading projections, we can obtain the following equivalence for theta-joins:

(Y(El ((F E2) ( (Y((Y2(El) ((F (Y2(E2)
where X1 and X2 represent the attributes of E1, and E2 respectively and J1 and J2 the respective subsets involved in the join condition F, and. finally:

Y1 = (X1 ( Y) ( J1
Y2= (X2 ( Y) ( J2

On the basis of the equivalences above, we can eliminate from each relation all the attributes that do not appear in the final result and are not involved in the join.

5. Combination of a selection and a cartesian product to form a theta-join:

(F (El (( E2) ( El ((F E2
Let us look at an example that clarifies the use of preliminary transformations and the important rule of anticipation of selections. Suppose we wish to find, by referring to the database in Figure 3.20, the registration numbers of the supervisors of the employees younger than 30. A first expression for this could be the specification of the cartesian product of the two relations (which have no attributes in common) followed by a selection and then a projection:

(Head((Number=Employee ( Age < 30(EMPLOYEES (( SUPERVISION))
By means of the previous rules, we can significantly improve the quality of this expression, which is very low indeed: it first computes a large cartesian product, although the final result contains only a few tuples. Using Rule 1, we break up the selection:

(Head((Number=Employee ((Age < 30(EMPLOYEES (( SUPERVISION)))
and we can then merge the first selection with the cartesian product, and form an equi-join (Rule 5) and anticipate the second selection with respect to the join (Rule 3), obtaining:

(Head ((Age < 30(EMPLOYEES) (( Number=Employee SUPERVISION)
Finally, we can eliminate from the first argument of the join (with a projection) the unnecessary attributes, using Rule 4:

(Head ((Number((Age < 30(EMPLOYEES)) (( Number=Employee SUPERVISION)
Some other transformations can be useful, particularly other forms of anticipation of selections and projections.

6. Distribution of the selection with respect to the union: 
(F(El ( E2) ((F(El ) ( (F(E2)
7. Distribution of the selection with respect to the difference:

(F(El – E2) ((F(El ) – (F(E2)
8. Distribution of the projection with respect to the union:

(X(El ( E2) ((X (El ) ( (X (E2)
It is worth noting that projection is not distributive with respect to difference, as we can verify by applying the expressions:

(X(Rl – R2) and (X (Rl ) – (X(R2)
to two relations on AB that contain tuples equal on A and different on B.
Other interesting transformations are those based on correspondence between set operators and complex selections:

9.
 (F1(F2 (R) ((F1(R) ( (F2(R)
10.

 (F1(F2 (R) ((F1(R) ( (F2(R) ((F1(R) ((  (F2(R)

11.
 (F1((F2 (R) ((F1(R) – (F2(R)

Then, there is the commutative and associative property of all the binary operators excluding difference and the distributive property of the join with respect to the union:

E (( (El ( E2) ( (E ((El ) ( (E (( E2)
Finally, we should be aware that the presence of empty intermediate results (relations with zero tuples) makes it possible to simplify expressions in a natural way. Note that a join (or also a cartesian product) in which one of the operators is the empty relation, produces an empty result.
3.1.8 Algebra with null values

In the above sections, we have always taken for granted that the algebraic expressions were being applied to relations containing no null values. Having already stressed, in Section 2.1.5 the importance of null values in actual applications, we must at least touch upon the impact that they have on the languages discussed in this chapter. The discussion is dealt with further in Chapter 4 in the context of the SQL language. Let us look at the relation in Figure 3.26 and the following selection:
(Age > 30(PEOPLE)
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Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Isaac  Jacob  

 

Parent  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Isaac  Jacob  

 

Figure 3.3   A renaming.    

Now the first tuple of the relation must contribute to the result and the second must not, but what can we say about the third? Intuitively, the age value is a null of unknown type, in that the value exists for each person, and the null means that we ignore it. With respect to these queries, instead of the conventional two-valued logic (in which formulas are either true or false) a three-valued logic can be used. In this logic, a formula can be true or false or can assume a third, new truth value that we call unknown and represent by the symbol U. An atomic condition assumes this value when at least one of the terms of the comparison assumes the null value. Thus, referring to the case under discussion, the first tuple certainly belongs to the result (true), the second certainly does not belong (false) and the third perhaps belongs and perhaps does not (unknown). The selection produces as a result the tuples for which the formula is true.
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PATERNIT Y   MATERNITY    

Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Abraham  Ishmael  

 

Mother  Child   Eve  Cain   Eve  Seth   Sarah  Isaac   Hagar  Ishmael  

 

Figure 3.2   A meaningful but incorrect union  

ΡΑΤΕ R ΝΓΓΥ      MATERNITY   ??  

The following are the truth tables of the logical connectives not, and and or extended in order to take the unknown value into account. The semantic basis of the three connectives is the idea that the unknown value is somewhere between true and false  

We should point out that the three-valued logic for algebraic operators also presents some unsatisfactory properties. For example, let us consider the algebraic expression

(Age > 30(PEOPLE) ( (Age ( 30(PEOPLE)

Logically, this expression should return precisely the PEOPLE relation, given that the age value is either higher than 30 (first sub-expression) or is not higher than 30 (second sub-expression). On the other hand, if the two sub​expressions are evaluated separately, the third tuple of the example (just like any other tuple with a null value for Age), has an unknown result for each sub-expression and thus for the union. Only by means of a global evaluation (definitely impractical in the case of complex expressions) can we arrive at the conclusion that such a tuple must certainly appear in the result. The same goes for the expression

(Age > 30( Age ( 30 (PEOPLE)
in which the disjunction is evaluated according to the three-valued logic.

In practice the best method for overcoming the difficulties described above is to treat the null values from a purely syntactic point of view. This approach works in the same way for both two-valued logic and three-valued logic. Two new forms of atomic conditions of selection are introduced to verify whether a value is specified or null:

·  A IS NULL assumes the value true on a tuple t if the value of t on A is null and false if it is not;

·  A IS NOT NULL assumes the value true on a tuple t if the value of t on A comes from the domain of A and false if the value is null.

· In this context, the expression

(Age > 30(PEOPLE)
returns the people whose age is known and over 30. whereas to obtain those who are or could be over 30 (that is, those whose age is known and over 30 or not known), we can use the expression:

(Age > 30(Age IS NULL(PEOPLE)
Similarly, the expressions

(Age > 30(PEOPLE) ( (Age ( 30(PEOPLE)

(Age > 30( Age ( 30 (PEOPLE)
do not return an entire relation, but only the tuples that have a value not null for Age. If we want the entire relation as the result, then we have to add an 'IS null' condition:

(Age > 30( Age ( 30(Age IS NULL (PEOPLE)
This approach, as we explain in Chapter 4. is used in the present version of SQL, which supports a three-valued logic, and is usable in earlier versions, which adopted a two-valued logic.

3.1.9 Views

In Chapter 1, we saw how it can be useful to make different representations of the same data available to users. In the relational model, this is achieved by means of derived relations, that is, relations whose content is defined in terms of the contents of other relations. Thus, in a relational database there can exist base relations, whose content is autonomous and actually stored in the database, and derived relations, whose content is derived from the content of other relations. It is possible that a derived relation is defined in terms of other derived relations, on condition that an ordering exists among the derived relations, so that all derived relations can be expressed in terms of base relations.
 There are basically two types of derived relations:

• materialized views: derived relations that are actually stored in the database;

• virtual relations (also called views, without further qualification): relations defined by means of functions (expressions in the query language), not stored in the database, but usable in the queries as if they were.

Materialized views have the advantage of being immediately available for queries. Frequently, however, it is a heavy task to maintain their contents consistent with those of the relations from which they are derived, as any change to the base relations from which they depend has to be propagated to them. On the other hand, virtual relations must be recalculated for each query but produce no consistency problems. Roughly, we can say that materialized views are convenient when there are fewer updates than queries and the calculation of the view is complex.
 It is difficult, however, to give general techniques for maintaining consistency between base relations and materialized views. For this reason, most commercial systems provide mechanisms for organizing only virtual relations, which from here on, with no risk of ambiguity, we call simply views.
Views are defined in relational systems by means of query language expressions. Then queries on views are resolved by substituting the definition of the view for the view itself, that is, by composing the original query with the view query. For example, consider a database on the relations:

R1(ABC), R22(DEF), R3(GH) 

with a view defined using a cartesian product followed by a selection

R=(A>D(R1 (( R2) 

On this schema, the query

(B=G(R (( R3)  

is executed by replacing R with its definition

(B=G((A>D(R1 (( R2) (( R3) 

The use of views can be convenient for a variety of reasons,

·  A user interested in only a portion of the database can avoid dealing with the irrelevant components. For example, in a database with two relations on the schemas

EMPLOYEES(Employee, Department; MANAGERS(Department, Supervisor)

· a user interested only in the employees and their respective supervisors could find his task facilitated by a view defined as follows:
( Employee, Supervisor(EMPLOYEES (( MANAGERS)
· Very complex expressions can be defined using views, with particular advantages in the case of repeated sub-expressions.

·  By means of access authorizations associated with views, we can introduce mechanisms for the protection of privacy; for instance, a user could be granted restricted access to the database through a specifically designed view; this application of views is discussed in Chapter 4.

·  In the event of restructuring of a database, it can be convenient to define views corresponding to relations that are no longer present after the restructuring. In this way, applications written with reference to the earlier version of the schema can be used on the new one without the need for modifications. For example, if a schema R(ABC) is replaced by two schemas R1(AB); R2(BC), we can define a view, R = R1 (( R2 and leave intact the applications that refer to R. The results as we show in Chapter 8 confirm that, if Β is a key for R2. then the presence of the view is completely transparent.

As far as queries are concerned, views can be treated as if they were base relations. However, the same cannot be said for update operations. In fact, it is often not even possible to define semantics for updating views. Given an update on a view, we would like to have exactly one set of updates to the base relations, such that the view, if computed after these changes to the base relations, appears as if the given update had been performed on it. Unfortunately, this is not generally possible. For example, let us look again at the view

( Employee, Supervisor(EMPLOYEES (( MANAGERS)

Assume we want to insert a tuple into the view: we would like to have tuples to insert into the base relations that allow the generation of the new tuple in the view. But this is not possible, because the tuple in the view does not involve the Department attribute, and so we do not have a value for it, as needed in order to establish the correspondence between the two relations. In general, the problem of updating views is complex, and all systems have strong limitations regarding the updating of views.

We return to the subject of views and present further examples in Chapter 4. in which we show how views are defined and used in SQL.
3.2 Relational calculus

The term relational calculus refers to a family of query languages, based on first order predicate calculus. These are characterized by being declarative, meaning that the query is specified in terms of the property of the result, rather than the procedure to be followed to obtain it. By contrast, relational algebra is known as a procedural language, because its expressions specify (by means of the individual applications of the operators) the construction of the result step by step.

There are many versions of relational calculus and it is not possible to present them all here. We first illustrate the version that is nearest to predicate calculus, domain relational calculus, which presents the basic characteristics of these languages. We then discuss the limitations and modifications that make it of practical interest. We will therefore present tuple calculus with range declarations, which forms the basis for many of the constructs available for queries in SQL, which we look at in Chapter 4.

In keeping with the topics already discussed concerning the relational model, we use non-positional notation for relational calculus.

This section (on calculus) and the following one (on Datalog) can be omitted without impairing the understanding of the rest of the book.

It is not necessary to be acquainted with first order predicate calculus in order to read this section. We give now some comments that enable anyone with prior knowledge to grasp the relationship with first order predicate calculus; these comments may be omitted without compromising the understanding of subsequent concepts.

There are some simplifications and modifications in relational calculus, with respect to first order predicate calculus. First, in predicate calculus, we generally have predicate symbols (interpreted in the same way as relations) and function symbols (interpreted as functions). In relational calculus, the predicate symbols correspond to relations in the database (apart from other standard predicates such as equality and inequality) and there are no function symbols. (They are not necessary given the flat structure of the relations.)

Then, in predicate calculus both open formulas (those with free variables), and closed formulas (those whose variables are all bound and none free), are of interest. The second type have a truth value that, with respect to an interpretation, is fixed, while the first have a value that depends on the values substituted for the free variables. In relational calculus, only the open formulas are of interest, A query is defined by means of an open calculus formula and the result consists of tuples of values that satisfy the formula when substituted for free variables.

3.2.1 Domain relational calculus

Relational calculus expressions have this form:

{A1:x1,...,Ak:xk|f} 
where:

·  A1,…,Ak are distinct attributes (which do not necessarily have to appear In the schema of the database on which the query is formulated);

· x1,...,xk are variables (which we will take to be distinct for the sake of convenience, even if this is not strictly necessary);

· f is a formula, according to the following rules: 
· There are two types of atomic formula:

· R(Al:xl. .... apxp). where R(A1, ..., Ap) is a relational schema and x1,..., xp are variables;

·  x(y or x(c, with x and y variables, c constant and ( comparison operator (=, (. (, (, >, <).

· If f1, and f2 are formulas, thcn f1 ( f2, f1 ( f2 and (f1 are formulas ((,(,( are the logical connectives): where necessary, in order to ensure that the precedence is unambiguous, brackets can be used;

· If f is a formula and x a variable (which usually appears in f, even if not strictly necessary) then (x(f) and (x(f) are formulas (( and ( are the existential quantifier and universal quantifier, respectively).

The list of pairs A1:x1 ,...., Ak: xk is called the target list because it defines the structure of the result, which is made up of the relation on A1,...,Ak that contains the tuples whose values when substituted for x1,...,xk render the formula true. The formal definition of the truth value of a formula goes beyond the scope of this book and, at the same time, its meaning can be explained informally. Let us briefly follow the syntactic structure of formulas (the term 'value' here means 'an element of the domain', where we assume, for the sake of simplicity, that all attributes have the same domain):

·  an atomic formula R(A1:x1,....ap:xp) is true for values of x1,...,xp that form a tuple of R;
·  an atomic formula x(y is true for values of x and y such that the value of x stands in relation ( with the value of y. similarly for x(c;
·  the meaning of connectives is the usual one;
·  for the formulas built with quantifiers:
· (x(f) is true if there exists at least one value for x that makes f true;
· (x(f) is true if f is true for all possible values for x.
Let us now illustrate relational calculus by showing how it can be used to express the queries that we formulated in relational algebra in Section 3.1.6, over the schema:

EMPLOYEES(Number, Name, Age, Salary); SUPERVISION(Head, Employee)
Let us begin with a very simple query: find the registration numbers, names, ages and salaries of the employees earning more than 40 thousand, which we can formulate in algebra with a selection:


(Salary > 40 (EMPLOYEES)
(3.6)

There is an equally simple formulation in relational calculus, with the expression:

{Number:m, Name:n, Age:a, Salary:s |
           EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) λ s > 40}
(3.7)

Note the presence of two conditions in the formula (connected by the logical operator and):
·  the first, EMPLOYEES(Number:m, Name:n, Age:a, Salary:s). requires that the values substituted respectively for the variables m. n, a, s constitute a tuple of the relation EMPLOYEES;
·  the second requires that the value of the variable s is greater than 40.

The result is made up of the values of the four variables that originate from the tuples of EMPLOYEES for which the value of the salary is greater than 40 thousand.

A slightly more complex query is: find the registration numbers, names and ages of the employees who earn more than 40 thousand. This query requires a subset of the attributes of employees and thus in algebra can be formulated with a projection (Expression 3.1):

(Number,Name,Age ((Salary>40(EMPLOYEES))
This query in calculus can be formulated in various ways. The most direct, if not the simplest, is based on the observation that what interests us are the values of Number, Name and Age, which form part of the tuples for which Salary is greater than 40. That is, for which there exists a value of Salary, greater than 40, which allows the completion of a tuple of the relation EMPLOYEES. We can thus use an existential quantifier:

{Number:m, Name:n, Age:a |
          (s(EMPLOYEES(Number:m. Name:n. Age:a, Salary:s) λ s >40)}
(3.8)

The use of the quantifier is not actually necessary, since by simply writing

{Number:m, Name:n, Age:a |
                EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) λ s>40}
(3.9)

we can obtain the same result.

The same structure can be extended to more complex queries, which in relational algebra we formulated using the join operator. We will need more atomic conditions, one for each relation involved, and we can use repeated variables to indicate the join conditions. For example, the query that requests find the registration numbers of the supervisors of the employees who earn more than 40 thousand, formulated in algebra by Expression 3.2:

(Head(SUPRVISION((Employee=Number((Salary>40(EMPLOYEES)))

can be formulated in calculus by:

{Head:h|EMPLOYEES(Number:m, Name:n, Age:a, Salary:s) λ
                         SUPERVISION(Employee: m, Head:h) λ s > 40}
(3.10)
where the variable m. common to both atomic conditions, builds the same correspondence between tuples specified in the join. Here, also, we can use existential quantifiers for all the variables that do not appear in the target list. However, as in the case above, this is not necessary, and would complicate the formulation.

If the involvement of different tuples of the same relation is required in an expression, then it is sufficient to include more conditions on the same predicate in the formula, with different variables. Consider the query: find the names and salaries of the supervisors of the employees earning more than 40 thousand, expressed in algebra by Expression 3.3, which has a join of the relation with itself:

(NameH,SalaryH((NumberH,NameH,SalaryH.AgeH(Number,Name.Salary,Age(EMPLOYEES)
((NumberH=Head
                                (SUPERVISION ((Employee=Number(EMPLOYEES)))
This query is formulated in calculus by requiring, for each tuple of the result, the existence of three tuples: one relating to an employee earning more than 40 thousand, a second that indicates who is his supervisor, and the last (again in the EMPLOYEES relation) that gives detailed information on the supervisor:

{NameH:nh, SalaryH:sh|
 ΕΜPLOYEES(Number:m, Name:n, Age:a, Salary :s) λ s > 40 λ
SUPERVISION( Empioyee:m, Head:h) λ
                EMPLOYEES(Number:h, Name: nh, Age:ah, Salary :sh)}
(3.11)

Consider next the query: find the employees earning more than their respective supervisors, showing registration number, name and salary of the employees and supervisors (Expression 3.4 in algebra). This differs from the preceding one only in the necessity of comparing values of the same attribute originating from different tuples, which causes no particular problems:

{Number:m. Name:n. Salary:s, NumberH:h, NameH:nh, SalaryΗ:sh | 
EMPLOYEES( Number:m. Name:n, Age:a, Salary:s) λ
SUPERVISION(Employee:m, Head:h) λ
          EMPLOYEES(Number:h, Name:nh, Age:ah, Salary:sh) λ s > sh)
(3.12)

The last example requires a more complex solution. We must find the registration numbers and names of the supervisors whose employees all earn more than 40 thousand. In algebra we used a difference (Expression 3.5) that generates the required set by taking into account all the supervisors except those who have at least one employee earning less than 40 thousand:

(Number,Name(EMPLOYEES ((NumberH=Head
((Head(SUPERVISION) –
 ((Head(SUPERVISION ((Employee=Number((Salary ( 40(EMPLOYEES)))))
In calculus, we must use a quantifier. By taking the same steps as for algebra, we can use a negated existential quantifier. We use many of these, one for each variable involved.

{Number:h, Name:n | EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) λ
SUPERVISION(Employee:m, Head:h) λ 
((m'((n'((a'((s'(EMPLOYEES(Number:m', Name:n', Age:a', Salary:s') λ
                   SUPERVISION(Employee: m', Head:h) λ s' <= 40))))}
(3.13)

As an alternative, we can use universal quantifiers:

(Number:h, Name:n I EMPLOYEE(Number:h, Name:nh, Age:a, Salary:s) λ
SUPERVISION(Employee:m, Head:h) Λ
(m'((n'((a'((s'(((EMPLOYEES(Number:m', Name:n', Age:a', Salary:s') λ
                    SUPERVISION( Employee:m', Head:h')) v s' > 40))))}
(3.14)

This expression selects a supervisor h if for every quadruple of values m', n', a', s' relative to the employees of h, s' is greater than 40. The structure (f ( g corresponds to the condition 'If f then g (in our case, if m' is an employee having h as a supervisor, then the salary of m' is greater than 40), given that it is true in all cases apart from the one in which f is true and g is false.

It is worth noting that variations of de Morgan laws valid for Boolean algebra operators, such that:

((f ( g) = (f ( (g
((f ( g) =(f ( (g
are also valid for quantifiers:

(x(f) = (((x(( (f)))
(x(f)= (((x(( (f)))
The two formulations shown for the last query can be obtained one from the other by means of these equivalences. Furthermore, in general, we can use a reduced form of calculus (but without losing expressive power), in which we have the negation, a single connective (for example, the conjunction) and a single quantifier (for example the existential, which is easier to understand).

3.2.2 Qualities and drawbacks of domain calculus

As we have shown in the examples, relational calculus presents some interesting aspects, particularly its declarative nature. There are, however, some defects and limitations, which are significant from the practical point of view.

First, note that calculus allows expressions that make very little sense. For example, the expression:

{Α1: x1, A2 : x2 | r(a1:x1) λ x2 = x2}

produces as a result a relation on A1 and A2 made up of tuples whose values in A1appear in the relation R. and the value on A2 is any value of the domain (since the condition x2 = x2 is always true). In particular, if the domain changes, for example, from the integers between 0 and 99 to the integers between 0 and 999 the answer to the query also changes. If the domain is infinite, then the answer is also infinite, which is undesirable. A similar observation can be made for the expression

{Α1: x1 |( R(A1:x1)}

the result of which contains the values of the domain not appearing in R.
It is useful to introduce the following concept here: an expression of a query language is domain independent if its result, on each instance of the database, does not vary if we change the domain on the basis of which the expression is evaluated. A language is domain independent if all its expressions are domain independent. The requirement of domain independence is clearly fundamental for real languages, because domain dependent expressions have no practical use and can produce extensive results.

Based on the expressions seen above, we can say that relational calculus is not domain independent. At the same time, it is easy to see that relational algebra is domain independent, because it constructs the results from the relations in the database, without ever referring to the domains of the attributes. So the values of the results all come from the instance to which the expression is applied.

If we say that two query languages are equivalent when for each expression in one there exists an equivalent expression in the other and vice versa, we can state that algebra and calculus are not equivalent. This is because calculus, unlike algebra, allows expressions that are domain dependent. However, if we limit our attention to the subset of relational calculus made up solely of expressions that are domain independent, then we get a language that is indeed equivalent to relational algebra. In fact:

·  for every expression of relational calculus that is domain independent there exists an expression of relational algebra equivalent to it;

·  for every expression of relational algebra there is an expression of relational calculus equivalent to it (and thus domain independent).

The proof of equivalence goes beyond the scope of this text, but we can mention its basic principles. There is a correspondence between selections and simple conditions, between projection and existential quantification, between join and conjunction, between union and disjunction and between difference and conjunction associated with negation. The universal quantifiers can be ignored in that they can be changed to existential quantifiers using de Morgan's laws.

In addition to the problem of domain dependence, relational calculus has another disadvantage, that of requiring numerous variables, often one for each attribute of each relation involved. Then, when quantifications are necessary the quantifiers are also multiplied. The only practical languages based at least in part on domain calculus, known as Query-by-Example (qbe), use a graphic interface that frees the user from the need to specify tedious details. Appendix A, which deals with the Microsoft Access system, presents a version of QBE.

In order to overcome the limitations of domain calculus, a variant of relational calculus has been proposed, in which the variables denote tuples instead of single values. In this way, the number of variables is often significantly reduced, in that there is only a variable for each relation involved. This tuple relational calculus would however be equivalent to domain calculus, and thus also have the limitation of domain dependence. Therefore, we prefer to omit the presentation of this language. Instead we will move directly to a language that has the characteristics of tuple calculus, and at the same time overcomes the defect of domain dependence, by using the direct association of variables with relations of the database. The following section deals with this language.

3.2.3 Tuple calculus with range declarations

The expressions of tuple calculus with range declarations have the form

{T|L|f}

where:

· L is the range list, enumerating the free variables of the formula f with the respective ranges of variability: in fact. L is a list of elements of type x(R) with x variable and R relation name; if x(R) is in the range list, then, when the expression is evaluated, the possible values for x are just the tuples in the relation R:
· T is the target list, composed of elements of type Y:x.Z (or simply x.Z, abbreviation for Z:x.Z), with x variable and Y and Ζ sequences of attributes (of equal length); the attributes in Ζ must appear in the schema of the relation that makes up the range of x. We can also write x.*, as abbreviation for X:x.X, where the range of the variable χ is a relation on attributes X;
· f   is a formula with

· atoms of type x.A(c or x1.A1(x2.A2. which compare, respectively, the value of x on the attribute A with the constant c and the value of x1, on A1 with that of x2 on A2,
· connectives as for domain calculus;

· quantifiers, which also associate ranges to the respective variables
(x(R)(f)    (x(R)(f)
where, (x(R)(f) means 'there is a tuple x in the relation R that satisfies the formula f' and (x(R)(f) means 'every tuple x in R satisfies f'.

Range declarations in the range list and in the quantifications have an important role: while introducing a variable x, a range declaration R(x) specifies that x can assume as values only the tuples of the relation R with which it is associated. Therefore this language has no need of atomic conditions such as those seen in domain calculus, which specify that a tuple belongs to a relation.

We show next how the various queries that we have already expressed in algebra and domain calculus can be formulated in this language.

The first query, which requests registration numbers, names, ages and salaries of the employees earning more than 40 thousand, becomes very concise and clear (compare with Expression 3.7):


{e.*|c(EMPLOYEES)|e.Salary>40}
(3.15)

In order to produce only some of the attributes, registration numbers, names and ages of the employees earning more than 40 thousand (Expression 3.1 in algebra and Expression 3.9 in domain calculus), it is sufficient to modify the target list:

{e(Number, Name, Age) | c(EMPLOYEES) | e.Salary > 40}
(3.16)

For queries involving more than one relation, more variables are necessary, specifying the conditions of correlation on the attributes. The query that requests find the registration numbers of the supervisors of the employees earning more than 40 thousand (Expression 3.2 in algebra and Expression 3.10 in domain calculus) can be formulated with:

{s.Head |e(employees), s(supervision) |
                                e.Number = s.Employee ( e.Salary > 40}
(3.17)

Note how the formula allows for the conjunction of two atomic conditions, one that corresponds to the join condition (e.Number = s.Employee) and the other to the usual selection condition (e.Salary > 40).

In the case of expressions that correspond to the join of a relation with itself, there will be more variables with the same range. The query: find names and salaries of supervisors of employees earning more than 40 thousand (Expression 3.3 and Expression 3.11) can be formulated using the following expression:

{NameH, SalaryH:e'.(Name. Salary) |
e'(EMPLOYEES), s(SUPERVISION), e(EMPLOYEES) | 
e'.Number = s.Head λ s.Employee = e.Number Λ
c.Salary > 40}
(3.18)

Similarly, we can find the employees who earn more than their respective supervisors, snowing registration number, name and salary of the employees and supervisors (Expression 3.4 in algebra and Expression 3.12 in domain calculus):

{e.(Name,Number,Salary), 
NameH, NumberH,SalaryH: e'.(Name,Number,Salary)|
e(employees), s(supervision), e'(employees) |
e.Number = s.Employee ( s.Head = e'.Number ( e.Salary > e'.Salary}
(3.19)

Queries with quantifiers are much more concise and practical here than in domain calculus. The query that requests find the registration number and name of the supervisors whose employees all earn more that 40 thousand (Expression 3.5 in algebra and Expression 3.13 or Expression 3.14 in domain calculus) can be expressed with far fewer quantifiers and variables. Again, there are various options, based on the use of the two quantifiers and of negation. With universal quantifiers:

{e.(Number, Name) | e(EMPLOYEES), s(SUPERVISION) |
e.Number = s.Head λ (e''(EMPLOYEES)((s'(SUPERVSION)
       (((s.Head = s'.Head λ s'.Employee = e'.Number) ( e'.Salary > 40))}
(3.20)

With negated existential quantifiers:

{e.(Numbcr, Name) | e(EMPLOYEES), s(SUPERVISION) |
e.Number = s.Head ((((e'( EMPLOYEES) ((s'( SUPERVISION)
               (s.Head = s'.Head ( s'.Employee = e'.Number ( e'.Salary(0)))}
(3.21)

Unfortunately, it turns out that it is not possible in tuple calculus with range declarations to express all the queries that could be formulated in relational algebra (or in domain calculus). In particular, the queries that in algebra require the union operator cannot be expressed in this version of calculus. Take, for example, the simple union of two relations on the same attributes: given R1(AB) and R2(AB), we wish to formulate the query that we would express in algebra by the union of R1 and R2. If the expression had two free variables, then every tuple of the result would have to correspond to a tuple of each of the relations. This is not necessary, because the union requires the tuples of the result to appear in at least one of the operands, not necessarily in both. If, on the other hand, the expression had a single free variable, this would have to refer to a single relation, without acquiring tuples from the other for the result. Therefore, the union cannot be expressed.

For this reason, SQL, as we will see in Chapter 4, allows for an explicit union construct, to express queries that would otherwise prove impossible. This is because the declarative aspects of SQL are based on tuple calculus with range declarations.

Note that if we allowed the definition of ranges made up of two or more relations, we would resolve the problem of simple unions. We could not however, formulate complex unions whose operands are sub-expressions not directly corresponding to relation schemas. For example, given two relations R1(ABC) and R2(BCD), the union of their projections on BC
(BC(R1) ( (BC(R2)

could not be expressed even with this extension, because the two relations have different schemas, and thus a single variable cannot be associated with both.

We must stress that, while the union operator cannot be expressed in this version of calculus, the intersection and difference operators are expressible.

· • Intersection requires the tuples of the result to belong to both the operands and thus the result can be constructed with reference to just one relation, with the additional condition that requires the existence of an equal tuple in the other relation; for example, the intersection:
(BC(R1) ( (BC(R2)
can be expressed by:
{x1.bc | x1(R1)| ( x2(R2) (x1.B = x2.B ( x1.C =x2.C)}

· • Similarly, the difference, which produces the tuples of an operand not contained in the other, can be specified by requesting precisely those tuples of the first argument that do not appear in the second. For example.
(BC(R1) – (BC(R2)
can be expressed by:
 {x1.bc | x1(R1)| (( x2(R2) (x1.B = x2.B ( x1.C =x2.C)}

3.3 Datalog

We conclude this chapter with a brief discussion of another database query language that has generated considerable interest in the scientific community since the mid-eighties. The basic concept on which the Datalog language is based is that of adapting the logic programming language Prolog for use with databases. We can illustrate neither Datalog nor Prolog in detail here, but we can mention the most interesting aspects, particularly from the point of view of a comparison with the other languages seen in this chapter.

In its basic form, Datalog is a simplified version of Prolog,
 a language based on first order predicate calculus, but with a different approach from the relational calculus discussed above. There are two types of predicate in Datalog:

· extensional predicates, which correspond to relations in the database;

·  intensional predicates, which essentially correspond to views (virtual relations), specified by means of logical rules.

Datalog rules have the form:

Head( body 
where

·  the Head is an atomic formula of the form R(A1 : a1,..., Ap:ap), similar to those used in domain relational calculus,
 where each ai, however, can be a constant or a variable;

·  the body is a list of atomic formulas, of both forms allowed in domain
calculus, that is, the form R(...) and the comparison between variables or between a variable and a constant.

Rules define the 'content' of intensional predicates, as the tuples whose values satisfy the body. The following conditions are imposed:

·  extensional predicates can appear only in the body of rules;

·  if a variable appears in the head of a rule, then it must also appear in the body of the same rule;

·  if a variable appears in a comparison atom, then it must also appear in an atom of the form R(...) in the same body.

The first condition ensures that there will be no attempt to redefine the relations stored in the database. The other two ensure a property similar (in this context) to domain independence as discussed with regard to relational calculus.

A basic characteristic of Datatog. which distinguishes it from the other languages we have seen up to now, is its use of recursion. It is possible for an intensional predicate to be defined in terms of itself (directly or indirectly). We will return to this aspect shortly.

Datalog queries are specified simply by means of atoms r(a1 : a1, ..., Ap: ap), usually preceded by a question mark '?', to underline precisely the fact that they are queries; however other syntactic conventions may be used. Queries produce as results the tuples of the relation R that can be obtained by suitable substitutions for the variables. For example, the query:

?EMPLOYEES(Number:m. Name: n. Age: 30. Salary:s)

returns the employees who are thirty years old. To formulate more complex queries, we must use rules. For example, in order to find the registration numbers of the supervisors of the employees who earn more than 40 thousand formulated in algebra by Expression 3.2 and in domain calculus by Expression 3.10, we define an intensional predicate SUPEROfRICH, with the rule:
SUPEROfRICH(Head:h) (
EMPLOYEES(Number:m, Name:n, Age:a, Salary:s),
                                            SUPERVISION(Employee:m, Head:h), s > 40
(3.22)

In order to evaluate a query of this nature, we must define the semantics of the rules. The basic concept is that the body of a rule is considered as the conjunction of the atoms that appear in it, and thus the rule can be evaluated in the same way as an expression of domain calculus. The body of the expression, substituting the commas with and. becomes the formula, and the head of the expression, apart from the name of the intensional predicate, becomes the target list. Expression 3.22 defines the intensionaJ relation SUPEROfRICH as made up of the same tuples that appear in the result of Expression 3.10 of calculus, which has precisely the structure described above:
(Head:h | EMPLOYEES(Number:m, Name: n, Age:a. Salary :s) ( 
SUPERVISION( Employee:m, Head:h) λ s > 40}

Similarly, we can write rules (with auxiliary intensional predicates) for many of the queries we have looked at in preceding sections. In the absence of recursive definitions, the semantics of Datalog is therefore very simple, in the sense that the various intensional predicates can be calculated by means of expressions similar to calculus. However, using the definition given so far for Datalog it is not possible to formulate all the queries that could be expressed in calculus (and in algebra). This is because there is no construct available corresponding to the universal quantifier (or to negation in the full sense of the term). It can be proven that non-recursive Datalog is equivalent to the domain independent subset of calculus without negations or universal quantifiers.

To furnish Datalog with the same expressive power as calculus, we must add to the basic structure the possibility of including in the body, not only atomic conditions, but also negations of atomic conditions (which we indicate by the symbol NOT).

Only in this way can we formulate the query that requests find the registration numbers and names of the supervisors whose employees all earn more than 40 thousand (Expression 3.13):

{Number:h, Name:n | EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) λ
SUPERVISION(Employee:m, Head:h) λ 
((m'((n'((a'((s'(EMPLOYEES(Number:m', Name:n', Age:a', Salary:s') λ
                   SUPERVISION(Employee: m', Head:h) λ s' <= 40))))}

Let us proceed by defining a predicate for the supervisors who do not satisfy the condition:

SUPEROFSOMENOTRICH(Head:h) (
SUPERVISION(Employee:m. Head:h), EMPLOYEES(Nlumber:m, Name:n, Age:a, Salary:s), s' ( 40

We can use this predicate in the negated form:

SUPEROFRICH(Number:h, Name:n) (
EMPLOYEES(Number:h, Name:n, Age:a, Salary:s) SUPERVISlON(Employee:m. Head:h), 
NOT SUPEROFSOMENOTRICH(Head:h)

We could prove that non-recursive Datalog with negation is equivalent to the domain-independent subset of calculus.

Greater expressive power is obtained by using recursive rules. For example, referring again to the database with the relations EMPLOYEES and SUPERVISION, we can define the intensional predicate SUPERIORS, which gives, for each employee, the supervisor, the supervisor's supervisor and so on, with no limits. For this we need two rules:
SUPERIORS(Employee:e, SuperHead:h) ( SUPERVISION(Employee:e·, Head:h)

SUPERIORS( Employee:e, SuperHead: h) (SUPERVISION( Employee: e, Head: h') SUPERIORS(Employee: h'. SuperHead:h)

The second rule is recursive, in that it defines the SUPERIORS relation in terms of itself. To evaluate this rule, we cannot proceed as we have done up to now, because a single evaluation of the body would not be sufficient to calculate the recursive predicate. There are various techniques for formally defining the semantics in this case, but they are well beyond the scope of this text. We will touch upon the simplest method, based on the technique known as fixpoint: the rules that define the intensional recursive predicate are evaluated many times until an iteration does not generate new results. In our case, the first iteration would generate a relation SUPERIORS equal to the extensional relation SUPERVISION, that is, containing the supervisors of the employees. The second step would add the supervisors of the supervisors, and so on. Obviously, queries of this nature cannot be formulated in relational algebra (or in calculus) because we would have no way of knowing how many times the join of the relation SUPERVISION with itself had to be specified.

As a final issue before concluding, we simply state the fact that certain recursive rules with negation are difficult to evaluate, because the fixpoint cannot be reached. This is why limits are imposed on the presence of negations in recursive rules. The reader should be aware that it is possible to identify a perfectly workable subset of recursive Datalog with negation that is much more expressive than calculus and relational algebra in that:

·  for every expression of algebra there is an equivalent expression of Datalog with negation;

·  there are recursive Datalog expressions for which there are no equivalent expressions in algebra and calculus.

3.4 Bibliography
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3.5 Exercises

Exercise 3.1 Study the database schema containing the relations:

FILMS(FilmNumber, Title, Director, Year. ProductionCost)
ARTISTS(ActorNumber, Surname, FirstName, Sex, BirthDate, Nationality)
ROLES( FilmNumber, ActorNumber, Character)

Produce a database on this schema for which the joins between the various relations are all complete.

Assuming two referential constraints between the relation ROLES and the other two, discuss possible cases of incomplete join.

Show a cartesian product that involves relations in this database.

Show a database for which one (or more) of the joins is (are) empty.

Exercise 3.2 With reference to the schema in Exercise 3.1, express the following queries in relational algebra, in domain calculus, in tuple calculus and in Datalog:

· the titles of the films starring Henry Fonda;

· the titles of the films in which the director is also an actor;

· the actors who have played two characters in the same film; show the titles of the films, first name and surname of the actor and the two characters;

· the titles of the films in which the actors are all of the same sex.

Exercise 3.3 Consider the database containing the following relations:

REPRESENTATIVE(Number, Surname, FirstName, Committee, County, Constituency)
CONSTITUENCIES(County, Number, Name)
COUNTIES(Code, Name, Region)
REGIONS(Code, Name) 
COMMlTTEES(Number, Name, President)

Formulate the following queries in relational algebra, in domain calculus and in tuple calculus;

· find the name and surname of the presidents of the committees in which there is at least one representative from the county of Borsetshire;

· find the name and surname of the members of the finance committee;

· find the name, surname and constituency of the members of the finance committee;

· find the name, surname, county and region of election of the delegates of the finance committee;

· find the regions in which representatives having the same surname have been elected.

Exercise 3.4 Show how the formulation of the queries in Exercise 3.) could be facilitated by the definition of views.

Exercise 3.5 Consider the database schema on the relations

COURSES(Number, Faculty, CourseTitle, Tutor)
STUDENTS( Number, Surname, FirstName, Faculty)
TUTORS( Number. Surname, FirstName)
EXAMS(Student, Course, Grade, Date)
STUDYPLAN( Student, Course, Year)

Formulate, in relational algebra, in domain calculus, in tuple calculus, and in Datalog, the queries that produce:

· the students who have gained an 'A' in at least one exam, showing, for each of them, the first name, surname and the date of the first of such occasions;

· for every course in the engineering faculty, the students who passed the exam during the last session;

· the students who passed all the exams required by their respective study plans;

· for every course in the literature faculty, the student (or students) who passed the exam with the highest grades;

· the students whose study plans require them to attend lectures only in their own faculties;

· first name and surname of the students who have taken an exam with a tutor having the same surname as the student.

Exercise 3.6 With reference to the following database schema:

ClTlES(Name, Region, Population)
CROSSINGS(City, River)
RlVERS( River, Length)

formulate the following queries in relational algebra, domain calculus, tuple calculus and Datalog:

· find the names, regions and populations for the cities that (i) have more than 50 thousand inhabitants and (ii) and are crossed by the Thames or the Mersey;

· find the cities that are crossed by (at least) two rivers, giving the name of the city and that of the longest of the rivers.

Exercise 3.7 With reference to the following database schema:

TRIBUTARIES(Tributary, River) 
RIVERS( River, Length)

formulate in Datalog, the query that finds all the tributaries, direct and indirect, of the Mississippi.

Exercise 3.8 Consider the relational schema consisting of the following relations:

TUTORS( Number, Surname, FirstName)

COURSES( Number, CourseName, Tutor)

STUDENTS(Number, Surname, FirstName)

EXAMS(Student, Course, Date, Grade)

With reference to this schema, formulate the expressions of algebra, tuple relational calculus and Datalog that produce:

· the exams passed by the student named Detrouvelan-Delaney (supposing him to be the only one with such a surname), indicating, for each exam, the name of the course, the grade achieved and the name of the tutor;

· the tutors who teach two courses (and not more than two), indicating the surname and first name of the tutor and the names of the two courses.

Exercise 3.9 Consider a relational schema containing the relations:

R1(ABC), R2(DG), R3(EF)

Formulate in tuple and domain relational calculus, the query formulated in relational algebra with the following expression:

(R3 ((G=E R2) ( (DG(AC((ACEF(R1 ((B=FR3)
Exercise 3.10 With reference to the schema in Exercise 3.9, formulate in relational algebra the queries specified in domain calculus by means of the following expressions:

{H:g. Β:b | R1(A:a,B:b,C:c) ( R2(D:c, G:g)}
 {A:a. B:b | R2(D:a,G:b) ( R3(E:a,F:b)}
{A:a, B:b | R1(A:a, B:b, C:c) ( (a'(Rt(A:a’, B:b, C:c) ( a(a')}
 {A:a, B:b | R1(A:a, B:b, C:c) ( (a'((Rt(A:a’, B:b, C:c)) ( a=a')}
 {A:a, B:b | R1(A:a, B:b, C:c) ( ((a'(Rt(A:a’, B:b, C:c)) ( a(a'}

Exercise 3.11 Consider the following algebraic expression:
(ADH(((B=C)((E=F) ( (A>20) ((G=10)((R1 (( R3) (( R2)
which refers to the schema

R1(AB), R2(CDE), R3(FGH)

and transform it with the goal of reducing the size of the intermediate results.
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Figure 3.25. The result of expression 3.5 on the database shown in Figure 3.20
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� This condition is relaxed in the recent proposals for deductive databases, which allow the definition of recursive views. We discuss this issue briefly In Section 3.3.


� We return to this subject in Chapter 12. in which we discuss active databases, and in Chapter 13. in which we discuss data warehouses


� For those acquainted with Prolog, note that function symbols are not used in Datalog.


� For the sake of continuity with previous sections, we use a non-positional notation for atomic formulas, while Datalog and Prolog usually have a positional notation. The substance of the language is, however, the same
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EMPLOYEES   STAFF  

Surname  Branch  Salary   Patterson  Rome  45   Trumble  London  53  

 

Surname  Factory  Wages   Cooke  Chicago  33   Bush  Monza  32  

 

 LOCATION,PAY< - – BRANCH,SALARY ( EMPLOYEES)       LOCATION,PAY< - – FACTORY,WAGES (EMPLOYEES)  

Surname         Locatio n  Pay   Patterson  Rome  45   Trumble  London  S3   Cooke  Chicago  33   Bush  Monza  32  

 

Figure 3.5   Another union preceded by renaming  
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EMPLOYEE S  

 Age <30      Salary>40 ( EMPLOYEE S )  

Surname  FirstName  Age  Salary   Smith  Mary  25  2000   Black  Lucy  40  3000   Verdi  Nico  36  4500   Smith  Mark  40  3900  

 

Surname  FirstName  Age  Salary   Smith  Mary  25  2000   Verdi  Nico  36  4500  

 

Figure 3.7   A selectio n .    
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PEOPLE    

Name  Age  Salary   Aldo  35  15   Andrea  27  21   Maria  NULL  42  

 

Figure 3.26 A relation with null values  

[image: image35.emf] 

CITIZENS  

 PlaceOfBirth=Residence (CITIZENS)  

Surname  FirstName  PlaceOfBirth  Residence   Smith  Mary  Rome  Milan   Black  Lucy  Rome  Rome   Verdi  Nico  Florence  Florence   Smith  Mark  Naples  Florence  

 

Surname  FirstName  PlaceOfBirth  Residence   Black  Lucy  Rome  Rome   Verdi  Nico  Florence  Horence  

 

Figure3.8   Another selection •  
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EMPLOYEES    Surname , FirstName ( EMPLOYEE )  

Surname  FirstName  Department  Head   Smith  Mary  Sales  De Rossl   Black  Lucy  Sales  De Rossi   Verdi  Mary  Personnel  Fox   Smith  Mark  Personnel  Fox  

 

Surname  FirstName   Smith  Mary   Black  Lucy   Verdi  Mary   Smith  Mark  

 

Figure 3.9   A projection  
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EMPLOYEES    Department,Head ( EMPLOYEE )  

Surname  FirstName  Department  Head   Smith  Mary  Sales  De Rossl   Black  Lucy  Sales  De Rossi   Verdi  Mary  Personnel  Fox   Smith  Mark  Personnel  Fox  

 

Department  Head   Sales  De Rossl   Personnel  Fox  

 

Figure 3.10 A projection with fewer tuples than operands  
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r 1  

r 2  

Employee  Department   Smith  sales   Hack  production   Bfenchi  production  

 

Department  Head   production  Mori   sales  Brown  

 

2 1

r r



     

Employee  Department  Head   Smith  sales  Brown   Black  production  Mori   Bi anchi    production    Mori    

 

Figure 3.11 A natural join  

[image: image39.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1   LEFT  r 2  

Employee  Department  Head   Smith  sales  NULL   Black  production  Mori   White  product ion  Mori  

 

Department  Head   production  Mori   purchasing  Brown  

 

r 1   RIGHT  r 2  

Employee  Department  Head   Black  production  Mori   White  production  Mori   NULL  purchasing  Brown  

 

r 1   FULL  r 2  

Employee  Department  Head   Smith  sales  NULL   Black  production  Mori   White  production  Mori   NULL  purchasi ng  Brown  

 

Figure 3.17 Some outer joins  
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PATERNITY    

MATERNITY  

Father  Child   Adam  Cain   Adam  Abel   Abraham  Isaac   Abraham  lshmael  

 

Mother  Child   Eve  Cain   Eve  Seth   Sarah  Isaac   Hagar  Ishmael  

 

ΡΑΤΕ R ΝΠΥ      MATERNITY    

Father  Child  Mother   Adam  Cain  Eve   Abraham  Isaac  Sarah   Abraharn  I shmael  Hagar  

 

Figure 3.13 Offspring with both parents.  

[image: image41.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1    r 2  

Employee  Department  Head   Black  production  Mori   White  production  Mori  

 

Figure 3.1 4 A join with 'dangling* tuples  

Department  Head   production  Mori   purchasing  Brown  

 

[image: image42.emf]  Employee  Project   Smith  A   Black  A   White  A  

 

Project  Head   A  Mori   A  Brown  

 

Employee  Project  Head   Smith  A  Mori   Black  A  Mori   White  A  Mori   Smith  A  Brown   Black  A  Brown   White  A  Brown  

 

Figure 3.16 A join with |r1 | X |r2 | tuples .    

r 1  

r 2  

r 1    r 2  

[image: image43.emf]  Employee  Department   Smith  sales   Black  production   White  production  

 

r 1  

r 2  

r 1    r 2  

Employee  Department  Head      

 

Figure 3.15 An empty join .    

Department  Head   marketing  Mori   purchasing  Brown  
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SUPERVISION    

Number  Name  A ge  Salary   101  Mary Smith  34  40   103  Mary Bianchi  23  35   104  Luigi Neri  38  61   105  Nico Bini  44  38   210  Marco Celli  49  60   231  Siro Bisi  50  60   252  Nico Bini  44  70   301  Steve Smith  34  70   375  Mary Smith  50  65  

 

Head  Employee   210  101   210  103   210  104   231  105   301  210   301  231   375  252  

 

Figure 3.20 A database giving examples of expressions  

[image: image45.emf]  Number  Name  Age   104  Luigi Neri  38   210  Marco Celli  49   231  Siro Bisi  50   252  Nico Bini  44   301  Steve Smith  34   375  Mary Smith  50  

 

Figure 3.21 The result of the  application of Expression 3.1 to the  database  in Figure 3.20.  
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EMPLOYEES  

PROJECTS  

Employee  Project   Smith  A   Blade  A   Black  Β  

 

Code  Name   A  Venus   Β  Mars  

 

 Project=Code  ( EMPLOYEES    PROJECTS )  

Employee  Project  Code  Name   Smith  A  A  Venus   Black  A  A  Venus   Black  Β  Β  Mars  

 

Figure 3.19  A cartesian product followed by a selection  
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EMPLOYEES  

PROJECTS  

Employee  Project   Smith  A   Blade  A   Black  Β  

 

Code  Name   A  Venus   Β  Mars  

 

EMPLOYEES    PROJECTS  

Employee  Project  Code  Name   Smith  A  A  Venus   Black  A  A  Venus   Black  Β  A  Venus   Smith  A  Β  Mars   Black  A  Β  Ma rs   Black  Β  Β  Mars  

 

Figure 3.18 A cartesian product  
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selection    

projection  

Figure 3.6   Selection and projection are  orthogonal operators  
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Figure 3.24 The result of the application of Expression 3.4 to  the database  in Figure 3.20.    
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Figure 3.23 The result of the  application of Expression 3.3 to  the  database  in Figure  3.20.  
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Figure 3.22 The result of the  application of Expression 3.2 to the  database  in Figure 3.20.    
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Figure 3.6   Selection and projection are orthogonal operators
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Figure 3.19 A cartesian product followed by a selection
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Figure 3.26 A relation with null values
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Figure 3.7   A selection.
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Figure 3.21 The result of the application of Expression 3.1 to the database in Figure 3.20.
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Figure 3.13 Offspring with both parents.
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Figure 3.18 A cartesian product
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Figure 3.20 A database giving examples of expressions
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Figure 3.17 Some outer joins
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Figure 3.12 The relations offences and CARS (from Figure 2.19) and their join












_1077698490.doc


PATERNITY







MATERNITY











Father�

Child�

�

Adam�

Cain�

�

Adam�

Abel�

�

Abraham�

Isaac�

�

Abraham�

Ishmael�

�









Mother�

Child�

�

Eve�

Cain�

�

Eve�

Seth�

�

Sarah�

Isaac�

�

Hagar�

Ishmael�

�









Figure 3.2   A meaningful but incorrect union
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Figure 3.11 A natural join
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Figure 3.5   Another union preceded by renaming
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Figure 3.15 An empty join.
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Figure 3.22 The result of the application of Expression 3.2 to the database in Figure 3.20.
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Figure 3.23 The result of the application of Expression 3.3 to the database in Figure 3.20.
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Figure 3.16 A join with |r1 | X |r2| tuples.
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Figure 3.14 A join with 'dangling* tuples
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Figure 3.24 The result of the application of Expression 3.4 to the database in Figure 3.20.
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Figure 3.9   A projection
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Figure 3.10 A projection with fewer tuples than operands
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Figure3.8   Another selection•
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Figure 3.4   A union preceded by two rcnamings
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Figure 3.3   A renaming.
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Figure 3.1.   Examples of union, intersection and difference












