Chapter 5
Design Techniques and models

Part II

Database design

[image: image2.png]

Design techniques and models

In the preceding chapters we analyzed database models and languages, assuming in most cases the existence of the database with which the users were to interact. In this chapter, we will begin to deal with the issue of designing a database according to the users' requirements. Designing a database means defining its structure, characteristics and contents. As we might imagine, this is a process in which many delicate decisions must be taken. The use of the appropriate techniques is therefore essential for the creation of a high-quality product.

In this introductory chapter, we will begin to look at the problem of database design in general terms and suggest suitable methods for this job. In particular, in Section 5.1, we will give an overall picture of the background of information systems development and we will present a structured approach to the design process. In Section 5.2 we will illustrate the Entity-Relationship model, which provides the designer with a means for data representation, known as the conceptual schema, which is used during the first phase of database design. The design process is divided into three main phases: conceptual design, logical design and physical design. The first two will be presented in detail in the next two chapters. The third will be presented further on, in Section 9.7, once the technological concepts to which it refers have been introduced. This part of the book is completed with a chapter on normalization, an important technique for the analysis of database schemas

5.1 The database design process

5.1.1 The life cycle of information systems

Database design is just one of the many .activities in the development of an information system within an organization. It should therefore be presented within the wider context of the information system life cycle.

[image: image3.png]

[image: image4.png]oy
i

As shown in Figure 5.1, the life cycle of an information system generally consists of the following activities.

· Feasibility study. This serves to define as precisely as possible, the costs of the various possible solutions and to establish the priorities for the creation of the various components of the system.

· Collection and analysis of requirements. This consists of the definition and study of the properties and functionality of the information system. It requires interaction with the users in order to capture the application requirements; it produces a complete (informal) description of the data involved and of the operations to be carried out on it- The hardware and software requirements of the information system are also established.

· Design. This is generally divided into two tasks: database design and operational design. In the first, the necessary structure and organization of the data are established, and in the second, the characteristics of the application programs are defined. The two steps are complementary and can take place either simultaneously or consecutively. The descriptions of data and programs produced during this activity are formal and refer to specific models.

· Implementation. This consists of the creation of the information system according to the structure and the characteristics defined in the design activity. The database is constructed and populated and the programs are coded.

· Validation and testing. This is to check the correct functioning and quality of the information system. The tests should encompass, as far as possible, all possible operating conditions.

· Operation. This is the activity in which the information system becomes live, and, it is hoped, performs the tasks for which it was originally designed. Assuming there are no major errors to be repaired or changes to the functionality required, this activity requires only management and maintenance operations.

It should be stressed that the process is rarely strictly sequential, given that during one of the activities above it is often necessary to reconsider decisions made during an earlier one, thus forming a 'cycle'. Moreover, sometimes another activity is added, called prototyping, which consists of the use of specific software tools for the rapid creation of a simplified version of the information system, with which to test its functionality. The prototype can be shown to the users in order to verify that the high-level requirements of the information system were correctly collected and modelled. This activity is often the basis for the modification of the requirements and possibly the revision of the project.

The database constitutes only one of the components of an information system, which also includes application programs, user interfaces and other service programs. However, the central role that the data itself plays in an information system more than justifies an independent study of database design. For this reason, we deal with only those aspects of information system development that are closely of databases, focusing on data design and on the related activities of collection and analysis of the requirements. This process is in keeping with the data driven approach to information system development, in which attention is concentrated on the data and its properties. With this approach, the database is designed first, followed by the applications that use it.

5.1.2 Methodologies for database design

In this part of the book, we follow a structured approach to database design that can be regarded as 'design meteorology'; as such it is presented by means of:

· a decomposition of the entire design activity in successive steps, independent one from the other;

· a series of strategies to be followed in the various steps and some criteria from which to choose in the case of there being options;

· some reference models to describe the inputs and outputs of the various phases.
The properties that such a methodology must guarantee are principally:

· generality with regard to the application and the systems in play (and thus the possibility of use that is independent of the specific application and of the available systems);

· the product quality in terms of accuracy, completeness and efficiency;

· the ease of use both of the strategies and of the reference models.

Within the field of databases, a design methodology has been consolidated over the years, which satisfies all the properties described. This methodology is divided into three phases to be followed consecutively (see Figure 5.2). It is based on a simple but highly efficient engineering principle: that of cleanly separating the decisions relating to 'what' to represent in the database (first phase), from those relating to 'how' to do it (second and third phases).

· Conceptual design. The purpose of this is to represent the informal requirements of an application in terms of a formal and complete description, but independent of the criteria for representation used in database management systems. The product of this phase is called the conceptual schema and refers to a conceptual data model. As we mentioned in Section 1.3, conceptual models allow the description of the organization of data at a high level of abstraction, without taking into account the implementation aspects In this phase, the designer must try to represent the information content of the database, without considering either the means by which this information will be implemented in the actual system, or the efficiency of the programs that make use of this information.

· [image: image5.png]Conceptual design

Logical design

Physical design

Database structure and

[image: image6.png]

[image: image7.png]

[image: image8.png]STUDENT

Logical design. This consists of the translation of the conceptual schema defined in the preceding phase, into the data model adopted by the database management system available. The product of this phase is called the logical schema of the database and refers to a logical data model. As we have noted, a logical model represents data in a way that is still independent of the physical details. although the DBMS used (or the implementation must be one that supports that data model In this phase, the designer must also take into account some optimization criteria, based on the operations to be carried out on the dala. Formal techniques for verification of the quality of the logical schema are often used. In the case of the relational data model, the most commonly used technique is that of normalization.
· Physical design. In this phase, the logical schema is completed with the details of the physical implementation (file organization and indexes) on a given DBMS. The product of this phase is called the physical schema, and refers to a physical data model. This model depends on the specific database management system chosen and takes into account the criteria for the physical organization of the data in that system.

Let us now look at how the application requirements are used in the various phases of design. We can distinguish between data requirements, concerning the content of the database, and operational requirements, concerning the use of the database by users or programs. In conceptual design data requiremnts provide most of the information, whereas operational requirements are used only to verify that the conceptual schema is complete. (That is, it contains the information necessary to carry out all the operations that will be needed.). In logical design, on the other hand, the conceptual schema, given as input, summarizes the data requirements; whereas the operational requirements, together with the predicted application load, are used to obtain a logical schema, which allows for the efficient execution of such operations. Finally, in the physical design, the logical schema and the operational requirements are used to optimize the performance of the information system. In this phase, it is necessary to take into account the characteristics of the particular DBMS used.
The result of the design process of a database is not only the physical schema, but also the conceptual schema and the logical schema. The conceptual schema provides a high-level representation of the database, which can be very useful for documentation purposes. The logical schema provides a description of the contents of the database that, leaving aside the implementation aspects, is useful as a reference for writing queries and updates.

In Figure 5.3, we show the products of the various phases in the case of the design of a relational database based on the use of the best-known conceptual data model, the Entity-Relationship model. An Entity-Relationship schema can be represented by a diagram, which shows the database at conceptual level. This representation is then translated into a relational schema, made up of a collection of tables. Finally, the data is described from a physical point of view (type and size of the fields), and auxiliary structures, such as indexes, are specified for efficient access to data.

In the next chapters we will examine in detail the various activities of database design described in Figure 5.2 and with reference to the models used in Figure 5.3. Before we begin, we will present, in Section 5.2, the Entity-Relationship model, which is recognized as the standard conceptual data model for database design. Conceptual design, which we will discuss in the next chapter, is based on this model. During logical design we will use the relational data model, which, as we have seen in earlier chapters, is the most widely used by current DBMSs.

.

3.2 The Entity-Relationship model

	Construct
	Graphical representation

	Entity
	[image: image9.png]

[image: image1.png]

	Relationship
	

	Simple attribute
	

	Composite attribute
	

	Cardinality of a
	

	Cardinality of an attribute
	

	Internal identifier
	

	External identifier
	

	Generalization
	

	Subset
	

Figure 5.4 The constructs of the E-R model and their graphical representation.

The Entity-Relationship (E-R) model is a conceptual data model, and as such provides a series of constructs capable of describing the data requirements of an application in a way that is easy to understand and is independent of the criteria for the management and (organization of data on the system These constructs are used to define schemas, which describe the organization and dictate which the legal occurrences
 of data are that is, the actual values that the database could hold at different times.

In the table in Figure 5.4 all the constructs that the E-R model provides are listed: note that, for every construct, there is a corresponding graphical representation. As we shall see, this representation allows us to define an E-R schema diagrammatically.

5.2.1 The basic constructs of the model

We will begin by analyzing the main constructs of this model: the entities, the relationships and the attributes.

Enlities These represent classes of objects (facts, things, people, for example) that have properties in common and an autonomous existence: CITY, DEPARTMENT, EMPLOYEE, PURCHASE and SALE are examples of entities in an application for a commercial organization. An occurrence of an entity is an object of the class that the entity represents. The cities of Stockholm, Helsinki, and Oslo are examples of occurrences of the entity CITY, and the employees Petersen and Johanssen are examples of occurrences of the EMPLOYEE entity. Note that an occurrence of an entity is not a value that identifies an object (for example, the surname of the employee or a social security nunmbe) but it is the object itself (the employee 'in flesh'). An interesting consequence of this fact is that an occurrence of an entity has an existence (and an identity) independent of the properties associated with it. (In the case of an employee, the employee exists regardless of having a name, a surname, an age. etc.) In this respect, the E-R model shows a marked difference from the relational model in which, as we saw in Chapter 2, it is not possible to represent an object without knowing its properties. (An employee is represented by a tuple containing the name, surname, age, and other attributes.)

[image: image10.png]

[image: image11.png]

In a schema, every entity has a unique name and is graphically represented by means of a box containing the entity name. Figure 5.5 shows some entities.

Relationships. These represent logical links between two or more entities. RESIDENCE is an example of a relationship that can exist between the entities CITY and EMPLOYEE, whereas EXAM is an example of a relationship that can exist between the entities STUDENT and COURSE. An occurrence of a relationship is an n-tuple (a pair in the most frequent case of the binary relationship) made up of occurrences of entities, one tor each of the entities involved. The pair of objects made up of the employee named Johanssen and the city named Stockholm, or the pair of objects made from the employee named Petersen and the city named Oslo, are examples of occurrences in the relationship RESIDENCE. Examples of occurrences of the relationship EXAM between the entities STUDENT and COURSE are the pairs e1, e2, e3, e4, e5, and e6, shown in Figure 5.6, in which the occurrences of the entities involved are also shown.

In an E-R schema, each relationship has a unique name and is graphically represented by means of a diamond, containing the name of the relationship. and by lines that connect the diamond with each component entity of the relationship. Figure 5.7 shows examples of schemas with relationships between entities. Note that there can be different relationships between the same entities, such as the relationships WORKPLACE and RESIDENCE between the entities EMPLOYEE and CITY. In the choice of names of relationships it is preferable to use nouns rather than verbs, so as not to imply or suggest a 'direction' in the relationship. For example, WORKPLACE is preferable to WORKSlN.

[image: image12.png]SUPPLY

[image: image13.png]

[image: image14.png]—OAge

PersoN

[image: image15.png]WORKRACE

[image: image16.png]

A very important aspect of relationships is that the set of occurrences of a relationship is, to all intents and purposes, a mathematical relation between the occurrences of the involved entities, as shown by Figure 5.6. A mathematical relation on two sets of entities is a subset of their cartesian product. This means that no n-tuples can be repeated among the occurrences of a relationship of the E-R model. This aspect has important consequences: for example, the relationship EXAM in Figure 5.7 does not have the capacity to report the fact that a certain student has taken the same exam more than once (because this would produce identical pairs). In this case, the exam should be represented by an entity on its own. linked to the entities student and COURSE by means of two binary relationships.

[image: image17.png]M@a

Tasx

[image: image18.png]L2 Vovace

Tounst

Recursive relationships are also possible, that is, relationships between an entity and itself. For example, in Figure 5.8, the recursive relationship COLLEAGUE on the entity EMPLOYEE connects pairs of people who work together while the relationship SUCCESSION on the entity SOVEREIGN allocates the next in line to each sovereign of a dynasty. Note that, unlike the first relationship, the relationship SUCCESSION is not symmetrical. In this case it is necessary to indicate the two roles that the entity involved plays in the relationship. This can be achieved by associating identifiers with the lines emanating from the recursive relationship (in this case Successor and Predecessor).

Figure 5.8 Examples of recursive relationships in the E-R model.

[image: image19.png]ﬁom

SO LicenceNumber

[image: image20.png]Registration

Colour

Finally, we can have relationships that involve more than two entities. An example is shown in Figure 5.9: an occurrence of the relationship SUPPLY describes the fact that a given supplier supplies a certain product to a department.

A possible set of occurrences of this relationship could establish that the firm Acme supplies printers to the sales department and calculators to the researeh department, while the firm Nakio supplies photocopiers to the sales department. A graphical representation of the possible occurrences of the SUPPLY relationship is shown in Figure 5.10 (triples s1, s2, s3, and s4). In the diagram, the occurrences of the entities involved are also shown.

Attributes. These describe the elementary properties of entities or relationships. For example, Surname, Salary and Age are possible attributes of the EMPLOYEE entity, while Date and Mark are possible attributes for the relationship EXAM between STUDENT and COURSE. An attribute associates with each occurrence of an entity (or relationship) a value belonging to a set known as the domain of the attribute. The domain contains the admissible values for the attribute For example, the attribute Surname of the entity EMPLOYEE can have any 20-characlcr string as a domain, while the Age attribute can have as a domain the integers between 18 and 65. Figure 5.11 shows how the attributes are represented graphically. [image: image21.png]

Domains are not shown, as they are usually described in the associated documentation.

[image: image22.png]

[image: image23.png]

[image: image24.png]o
heo Number
1 % [1P

WOnm Man | (EmpLovee| | STUDENT
ey !:
MANAGER
Girpors _Ega_
MANAGER

[image: image25.png]4% ﬁ%
— < Tek=

[image: image26.png]Name

It can sometimes be convenient to group attributes of the same entity or relationship that have closely connected meanings or uses. The set of attributes obtained in this manner is called a composite attribute. We can, for example, group together the attributes Street. HouseNumber and PostCode in the PERSON entity to form the composite attribute Address. A graphical representation of a composite attribute is shown in Figure 5.12. Composite attributes can be very useful in practice as a means for summarizing several related attributes, lor example, all clinical exams of a patient, omitting their detailed description.

[image: image27.png]

Schemas with basic constructs. The three constructs of the E-R model seen up to now already allow us to define schemas of a certain level of complexity. Consider for example the E-R schema shown in Figure 5.13. It represents some information concerning a firm with several branches. Beginning with the entity BRANCH and continuing in an anti-clockwise direction, we can see that each branch of the firm is situated in a city and has an individual address (attributes City and Address). A branch is organized into departments (COMPOSITION relationship), and each department has a name and a telephone number (department entity and related attributes). The employees of the company belong to these departments, starting on a particular date (MEMBERSHIP relationship and StartDate attribute) and some employees manage such departments (management relationship). For each employee, the surname, salary and age and an identification code are shown (EMPLOYEE entity and related attributes). The employees work on projects beginning on a certain date (PARTICIPATION relationship and StartDate attribute). Each project has a name, a budget and a release date (PROJECT entity and related attributes)

5.2.2 Other constructs of the model

Let us now examine the remaining constructs of the E-R model the cardinality of relationships and attributes, the identifiers and the generalizations. As we shall see, only the last is a 'new' construct. The others constitute integrity constraints on constructs we have already seen, that is, properties that must be satisfied by the occurrences of entities and relationships in order to be considered 'valid'.

Cardinality of relationships. These are specified for each entity participating in a relationship and describe the maximum and minimum number or relationship occurrences in which an entity occurrence can participate. They state therefore, how many times in a relationship between entities an occurrence of one of these entities can be linked to occurrences of the other entities involved. For example, suppose that in a relationship ASSIGNMENT between the entities EMPLOYEE and TASK we specify for the first entity a minimum cardinality equal to one and a maximum cardinality equal to five This means that we wish to indicate that an employee can participate in a minimum of one and a maximum of five occurrences of the ASSIGNMENT relationship. In other words, we wish to say that, in our application, at least one task must be assigned to an employee, but not more than five may be. Again, suppose that for the TASK entity we specify a minimum cardinality equal to zero and a maximum cardinality equal to 50. In this case we only impose the constraint that a task can appear in a maximum of 50 occurrences of the ASSIGNMENT relationship. Thus, a certain task could be assigned to no employees or to a number of employees less than or equal to 50. In an E-R schema, the minimum and maximum cardinalities of the participation of entities in relationships are specified in brackets, as shown in Figure 5.14.

In principle, it is possible to assign any non-negative integer to the cardinality of a relationship with the only constraint that the minimum cardinality must be less than or equal to the maximum cardinality. In most cases, however, it is sufficient to use only three values: zero, one and the symbol 'N' (which is called 'many' and indicates generically an integer greater than one). In particular:

· for the minimum cardinality, zero or one; in the first case we say that the participation in the relationship is optional, in the second we say that the participation is mandatory;
· for the maximum cardinality, one or many (N); in the first case each occurrence of the entity is associated at most with a single occurrence of the relationship, while in the second case each occurrence of the entity is associated with an arbitrary number of occurrences of the relationship

Let us reconsider Figure 5.6; it shows that the STUDENT entity participates in the EXAM relationship with a cardinality equal to (0,N). This means that there are students who do not participate in any occurrence of the relationship (student S4), and others who participate in more than one occurrence of the relationship (for example, student S2 who participates in e2 and e3).

In Figure 5.15 various cases of cardinality for relationships are shown. For example, the cardinality of the relationship RESIDENCE tells us that each person can be resident in one city and one only, while each city can have no resident, or many of them.

By observing the maximum cardinalities, it is possible to classify the binary relationships based on the type of correspondence that is established among the occurrences of the involved entities. The relationships having a maximum cardinality equal to one for both the entities involved, such as the SALE relationship in Figure 5.15, define a one-to-one correspondence between such entities and are therefore called one-to-one relationships. Similarly, relationships between an entity with maximum cardinality equal to one and another with maximum cardinality equal to N. such as the relationship RESIDENCE in Figure 5.15, are called one-to-many relationships. Finally, relationships having a maximum cardinality equal to N for both the entities involved, such as the relationship RESERVATION in Figure 5.15 are called many-to-many relationships.
For minimum cardinality, on the other hand, note that the case of mandatory participation for all the entities involved is rare. This is because when a new entity occurrence is added, very often the corresponding occurrences of the other entitles linked to it are not yet known or even do not exist. For example, consider the first schema in Figure 5.15. When a new order is received, there exists as yet no invoice relating to it and therefore it is not possible to construct an occurrence for the SALE relationship that contains the new order.

In n-ary relationships, the entities involved almost always have a maximum cardinality that is equal to N. An example is provided by the ternary relationship SUPPLY in Figure 5.9: as we can see in Figure 5.10, there are examples of occurrences of each of the entities involved (S1, P3 and D4) that appear in many occurrences of this relationship. When an entity is involved in an n-ary relationship with a maximum cardinality equal to one, it means that one of its occurrences can be linked to a single occurrence of the relationship, and thus to a single n-tuple of occurrences of the other entities involved in the relationship. This means that it is possible (and at times can seem more natural) to replace the n-ary relationship with n binary one-to-many relationships that link such an entity with the others. We will return to this subject in Chapter 8, which deals with normalization, where we give more precise criteria for analysis.

Cardinality of attributes. These can be specified for the attributes of entities (or relationships) and describe the minimum and maximum number of values of the attribute associated with each occurrence of an entity or a relationship. In most cases, the cardinality of an attribute is equal to (1,1) and is omitted. In these cases, the attribute represents a function that associates a single value with each entity occurrence. The value of a certain attribute however can be null (under the same conditions as those introduced in Section 3.1.5 for the relation model), or there can exist various values of a certain attribute associated with an entity occurrence. These situations can be represented by allocating to the attribute a minimum cardinality equal to zero in the first case, and a cardinality equal to many (N) in the second. Figure 5.16 shows an example of an entity whose attributes have cardinality.

Due to cardinalities, we know that a person has one and only one surname, can have a driving license (but if he or she has one, it is unique) and can have several cars but also none
In a similar way to the participation of entity occurrences to relationships, we say that an attribute with a minimum cardinality equal to zero is optional for the related entity (or relationship), while it is mandatory if the minimum cardinality is equal to one. Also, we say that an attribute is multivalued if its maximum cardinality is equal to N. As we discussed in Chapter 2, it can happen in many situations that certain information is not available, and therefore optional attributes are quite common. Multivalued attributes, on the other hand, should be used with great caution, because they represent situations that can be modelled, sometimes, with additional entities linked by one-to-many (or many-to-many) relationships to the entity to which they refer. To give an example, assume we have a multivalued attribute Qualifications for the PERSON entity in Figure 5.16, because a person can have many qualifications. The qualification is, however, a concept shared by many people: it can therefore be natural to model it with an entity QUALIFICATION linked to the PERSON entity by a many-to-many relationship We will, however, leave this discussion until Section 6.2 in which we will give criteria for the choice of E-R construct most appropriate for the representation of a 'real-world' concept.

Identifiers. These are specified for each entity of a schema and describe the concepts (attributes and/or entities) of the schema that allow the unambiguous identification of the entity occurrences. In many cases, an identifier is formed by one or more attributes of the entity itself: in this case we talk about an internal identifier (also known as a key). For example, an internal identifier for the entity AUTOMOBILE with attributes Model, Registration, and Colour, will be the attribute Registration, assuming that two cars with the same registration number cannot exist. In the same way, an internal identifier for the PERSON entity with attributes FirstName, Surname, Address, and DateOfBirth can be the set of the attributes FirstName, Surname and DateOfBirth. This assumes, of course, that in our application there are no two people sharing the same first name, surname and date of birth. In Figure 5.17 the symbols used to represent the internal identifiers in an E-R schema are shown. Note the different notation used to indicate internal identifiers made up of a single attribute and identifiers made up of several attributes.
Sometimes, however, the attributes of an entity are not sufficient to identify its occurrences unambiguously. Consider, for example, the entity STUDENT in Figure 5.18. At first glance, it can seem that the attribute Registration can be an identifier for such an entity, but this is not the case. The schema, in fact, describes students enrolled in various universities, and two students enrolled in different universities could have the same registration number. In this case, in order to identify a student unambiguously, we need the relevant university, as well as the registration number. Thus, a correct identifier for the STUDENT entity in this schema is made up of the attribute Registration and of the UNIVERSITY entity. This is called an external identifier. It should be observed that this identification is made possible by the mandatory one-to-many relationship between the entities UNIVERSITY and STUDENT, which associates every student with a single university. Thus, an entity E can be identified by other entities only if each such entity is involved in a relationship in which E participates with cardinality (1,1). The diagrammatic representation of an external identifier is shown in Figure 5.18.

Based on what we have said on the subject of identifiers, we can make some general observations:

· an identifier can involve one or more attributes, provided that each of them has (1,1) cardinality;

· an external identifier can involve one or more entities, provided that each of them is member of a relationship to which the entity to identify participates with cardinality equal to (1,1);

· an external identifier can involve an entity that is in its turn identified externally, as long as cycles are not generated;

· each entity must have one (internal or external) identifier but can have more than one. Actually, if there is more than one identifier, then the attributes and entities involved in an identification can be optional (minimum cardinality equal to 0).
At this point we can re-examine the schema shown in Figure 5.13 introducing cardinality and identifiers. The resulting schema is shown in Figure 5.19.

We can observe that the name of a city identities a branch of the company. This means that there is only one branch in a city. A department, on the other hand, is identified by the name and by the branch of which it is part. (We can deduce from the cardinality that a branch has many departments but every department belongs to a single branch.). A department has at least one telephone number, but can have more than one. An employee (identified by a code) can belong to a single department (but it can happen that he or she belongs to no department, for example if new to the company) and can manage zero or one department. Further, each department has a sole manager, and one or more employees. Many employees (but at least one) work on each project (identified unambiguously by their names) and each employee works in general on many projects (but it is also possible that they work on no projects). Finally, the release date of a project need not be fixed.

Generalizations. These represent logical links between an entity E, known as parent entity, and one or more entities E1,..., En, called child entities, of which E is more general, in the sense that it comprises them as a particular case. In this situation we say that E is a generalization of E1,..., En and that the entities E1 ,..., En are specializations of the E entity. For example, PERSON is a generalization of MAN and WOMAN, while PROFESSLONAL is a generalization of ENGINEER, DOCTOR and LAWYER. Conversely, MAN and WOMAN are specializations of PERSON.
Among the entities involved in a generalization the following properties are valid.

· Every occurrence of a child entity is also an occurrence of the parent entity. For example, an occurrence of LAWYER is also an occurrence of PROFESSIONAL.

· Every property of the parent entity (attributes, identifiers, relationships and other generalizations) is also a property of a child entity. For example, if the PERSON entity has attributes Surname and Age, then the entities MAN and WOMAN also possess these attributes. Furthermore, the identifier of PERSON is also a valid identifier for the entities MAN and WOMAN. This property of generalizations is known as inheritance.
Generalizations are represented graphically by means of arrows that join the child entities with the parent entity as shown in the examples in Figure 5.20. Observe that, for the child entities, the inherited properties are not explicitly represented.

Generalizations can be classified on the basis of two orthogonal properties:

· a generalization is total if every occurrence of the parent entity is also an occurrence of one of the child entities, otherwise it is partial:
· a generalization is exclusive if every occurrence of the parent entity is at most an occurrence of one of the child entities, otherwise it is overlapping.
The generalization PERSON, of MAN and WOMAN in Figure 5 20 is, for example, total (the men and the women constitute 'all' the people) and exclusive (a person is either a man or a woman). The generalization VEHICLE of AUTOMOBILE and BICYCLE is, on the other hand, partial and exclusive, because there are other types of vehicles (for example, motor bikes) that are neither cars nor bicycles. Finally, the generalization PERSON of STUDENT and EMPLOYEE is partial and overlapping, because there are students who are also employed.

This last example suggests that in reality, overlapping generalizations can be easily transformed into exclusive generalizations by adding one or more child entities, to represent the concepts that constitute the 'intersections' of the entities that overlap. In the case of students and employees, it is sufficient to add the entity EMPLOYEDSTUDENT in order to obtain an exclusive generalization. Thus, we assume from here on, without significant loss of generality, that generalizations are always exclusive.

Total generalizations are usually represented by drawing the arrow with a solid line (see the example in Figure 5. 21)

In general, an entity can be involved in many different generalizations. There can also be generalizations on more than one level: this is known as a generalization hierarchy. Finally a generalization can have a single child entity: this is known as a subset. In Figure 5.21 a generalization hierarchy is shown. The relation that exists between the entities PROJECT MANAGER and ANALYST is an example of a subset.

5.2.3 Final overview of the E-R model

We have seen how the Entity-Relationship model provides the designers with some constructs for describing the data involved in an application, associated with a graphical representation that is easy to understand.

All the constructs of the E-R model are illustrated in the schema in Figure 5.23, which at the same time provides an example of an E-R schema and a simplified description of the E-R model itself. Let us now analyse this schema and consider this exploration as an exercise of 'reading an E-R schema'; this is an activity that we need to practice, as it is one that occurs frequently in the analysis and maintenance of existing information systems.

We can see that the model is made up of a series of constructs of which two are considered 'basic': the entity and the relationship. An entity can participate in zero or more relationships, whereas a relationship involves two or more entitles. The participation of an entity in a relationship has a minimum and a maximum cardinality. The other constructs of the model are attributes and generalizations. An attribute has a name and a minimum and maximum cardinality, and belongs to a basic concept, that is, to an entity or a relationship. Due to the generalization, the relationship MEMBERSHIP is inherited by the children of the entity BASICCONSTRUCT. Composite attributes are a specialization of attributes and are made up of one or more attributes. According to the cardinalities, a generalization has exactly one parent entity and one (in the case of subsets) or more child entities. An entity can be parent or child of many generalizations (and also of none). Finally, note that a basic construct is identified unambiguously by its name (in fact. it is essential in a schema to avoid using the same name for different entities or relationships). Two attributes can have the same name if they belong to different relationships or entities as described by the external identification. (See for example the attribute Name in Figure 5.19.) Generalizations do not usually have a name and to identify them we assume that they are numbered.
There exist, finally, other constraints on the use of constructs that cannot be expressed in the schema. For example, a hierarchy of generalizations cannot contain cycles. Also, a minimum cardinality must be less than or equal to the related maximum cardinality. The problem of documentation of constraints that can not be expressed in the E-R model will be discussed more fully in the next section.

We will conclude the section with a consideration of a general nature, E-R schemas provide an abstract representation of the data involved in an application, and therefore they can be used for purposes other than database design. There are various examples of the possible use of conceptual schemas apart from design.

· E-R schemas can be used for documentation purposes, as non-specialists easily understand them.

· They can be used to describe the data of an information system already in existence (for example, to integrate it with other databases). In the case of a system made up of heterogeneous subsystems, there is the advantage that the E-R schema can represent the various components with an abstract language, which is therefore unifying.

· In the case of modification of the requirements of an application, E-R schemas can be used to understand which portion of the system must be changed and what modifications are to be carried out.

5.3 Documentation of E-R schemas

We have seen how the Entity-Relationship model provides highly expressive modelling tools that allow the easy and efficient description of very complex situations. An E-R schema, however, is rarely sufficient by itself to represent all the aspects of an application in detail. Firstly, in an E-R schema, only the names of the various concepts appear, and this can be insufficient to explain their meaning. If we look again at the example given in Figure 5.19, it might not be clear if the PROJECT entity refers to projects internal to the company or to external projects, in which the company is taking part.

Moreover, when a schema is particularly complex, it might not always be possible to represent all the properties of the various concepts, in a way that is comprehensible. With reference to the example in Figure 5.19, it would, for instance, be difficult to represent other attributes for EMPLOYEE, without reducing the readability of the schema. In general, representing large schemas graphically requires a certain ability in devising a readable layout; this is further discussed in Section 6.4

Other limitations concern the expressive power of the E-R model. It is actually impossible in certain cases to represent some properties of data by means of the constructs that the E-R model provides. Look again at the example in Figure 5.19 and suppose that in our company an employee can be manager only of the department to which he belongs. This property cannot be directly expressed in the schema because it refers to two independent concepts (management and membership) described by two relationships, and there are no constructs in the model that allow the correlation of two relationships. Another example of properties that cannot be directly expressed by the constructs of the E-R model is the fact that an employee cannot have a salary higher than the manager of his or her department. Both properties correspond to integrity constraints on the data. In fact, while the E-R model is sufficiently expressive to represent data, it does not provide suitable means for the representation of complex constraints on data.

Thus, it is indispensable to provide every E-R schema with support documentation, which can facilitate the interpretation of the schema itself and describe properties of the data that cannot be expressed directly by the constructs of the model. In the next sections we will therefore describe structures and techniques for the documentation of an E-R schema. The concepts introduced should not be taken as new representation constructs, but simply as tools suitable for completion and enrichment of the description of the data in .111 application created using a conceptual model. They should therefore be considered as a support for the conceptual analysis and cannot be asubstitute for it.

5.3.1 Business rules

Business rules are one of the tools used by information systems analysts to describe the properties of an application that cannot be directly expressed with a conceptual model. As suggested by their name, they allow the specification of 'rules' of the particular application domain that we are considering. Returning to the example given above, the fact that an employee cannot earn more than his or her own manager is actually a rule of the business.

The term business rule is often used with a broader meaning by analysts, to indicate any information that defines or constrains some aspect of an application. In particular a business rule can be:

1. the description of a concept relevant to the application, or rather the precise definition of an entity, an attribute or a relationship of the E-R model;

2. an integrity constraint on the data of the application, whether it be the documentation of a constraint expressed by means of some construct of the E-R model (for example, the cardinality of a relationship) or the description of a constraint that is not directly expressible using the constructs of the model:

3. a derivation, or rather a concept that can be obtained, by means of an inference or an arithmetical calculation, by other concepts of the schema (for example an attribute Cost whose value can be obtained from the sum of the attributes Net and Taxes).

For rules of the first type, it is clearly impossible to define a precise syntax, and in general, we have to use sentences in natural language. As we will describe in the following section, these rules are typically represented in the form of glossaries, grouping the descriptions as appropriate (for example, by entity, or by relationship).

The rules that describe integrity constraints and derivations, on the other hand, lend themselves more to formal definitions and rather complex syntax has been proposed for expressing them. Given, however, that there are no standards and that every formalization runs the risk of not being sufficiently expressive we will continue to use definitions in natural language taking care, however, to structure such definitions in appropriate manner.
In particular, integrity constraints can always be expressed in the form of assertions, that is, statements that must always be satisfied in our database. For reasons of clarity and ease of creation, such statements must be 'atomic’. That is, they cannot be decomposed into phrases that constitute assertions in themselves. Furthermore, since they are used to document an E-R schema, assertions should be stated in a declarative manner, which should not suggest ways to satisfy them, because such suggestion would give insights on the implementation, but this is not relevant to conceptual representation. For this reason, a notation of the type if <condition> then <action> is not suitable to express business rules, when they document an E-R schema. An appropriate structure to state business rules in the form of assertions could be the following:

(concepl(must/must not (expression on concepts(
where the concepts cited can correspond either to concepts of the E-R schema to which it refers, or to concepts that can be derived from them. For example, returning to the example given for the schema in Figure 5.19, business rules that express integrity constraints are:

(BR1). the manager of a department must belong to that department;

(BR2). an employee must not have a salary greater than that of the manager of the department to which he or she belongs:

(BR3). a department of the Rome branch must be managed by an employee with more than 10 years' employment with the company.

Note how concepts such as 'department manager' and 'employee with more than 10 years' employment with the company' are not represented directly on the schema, hut can nonetheless be retrieved from it.

Let us now consider the business rules that describe derivations. These rules can be expressed by specifying the operations (arithmetical or otherwise) that allow us to obtain the derived concept. A possible structure is thus:

(concept(is obtained by (operations on concepts(
For example, if in our example, the entity DEPARTMENT has an attribute NumberOfEmployees, there could be a rule of the type:

(BR4). the number of employees in a department is obtained by counting the employees who belong to it

We have said that business rules constitute a form of documentation of a conceptual schema. When the conceptual schema is translated into a database (logical and physical phases of design), non-descriptive business rules (that is, those that express constraints or derivations) should be implemented in some way to guarantee the consistency of the data with respect to the properties that they represent. It is possible to follow different approaches:

· using SQL to define the logical schema of a database, by means of predefined and generic constraints or SQL-2 assertions (as described in Chapter 4)
· using triggers or active rules (as we will explain in Chapter 12);

· with appropriate SQL manipulation statements invoked from within a program.

5.3.2 Documentation techniques

We have said that an E-R schema should be supplied with support documentation, to facilitate the interpretation of the schema itself and to describe properties of the data that cannot be expressed directly by the constructs of the model. We have seen furthermore, that this documentation can be expressed in terms of business rules. Let us now see in which form it is possible to produce this documentation, referring to an example.

The documentation of the various concepts represented in a schema, that is, the business rules of the descriptive type, can be easily organized as a data dictionary. This is made up of two tables: the first describes the entities of the schema with their names, an informal definition in natural language, the list of all the attributes (with possible descriptions associated with them) and the possible identifiers. The other table describes the relationships with their names, an informal description, the list of attributes (with possible descriptions) and the list of the entities involved, together with (heir participation cardinalities. An example of a data dictionary for the schema in Figure 5.19 is shown in Figure 5.23. Note how the dictionary can also be used to document some constraints on the data and thus other forms of business rules. As we have already indicated, the use of the data dictionary is particularly important when the schema is complex and it is laborious to specify all the attributes of entity and relationship directly on the schema.

As regards the other business rules, we can resort to another table, which lists the various rules, organized by type. Such rules can be expressed in the forms suggested in the section above, If possible referring explicitly to the concepts of the schema. Remember that it is important to represent all the rules that describe constraints not expressed in the schema, but it can sometimes be useful also to represent rules that document constraints already expressed in the schema. An example of documentation of this type for the schema in Figure 5.19 is shown in Figure 5.24.

	Entity
	Description
	Attributes
	Identifier

	EMPLOYEE
	Employee working in the company.
	Code, Surname, Salary,. Age
	Code

	PROJECT
	Company project on which employees are working.
	Name, Budget. ReleaseDate
	Name

	DEPARTMENT
	Department of a company branch.
	Phone. Name
	Name, BRANCH

	BRANCH
	Company branch in a particular city.
	City, Address (Number. Street and PostCode)
	City

	Relationship
	Description
	Entities involved
	Attributes

	MANAGEMENT
	Associates a manager with a department.
	Employee (0.1)
Department(1,1))
	

	MEMBERSHIP
	Associates an employee with a department.
	Employee (0,1)

Department (1,N)
	StartDate

	PARTICIPATION
	Associates employees with projects.
	Employee(0,N)
Project(1,N))
	StartDate

	COMPOSITION
	Associates a department with a branch.
	Department(1,1) Branch (1,N)
	

Figure 5.23 The data dictionary for the schema in Figure 5.19

	Constraints

	(BR1) The manager of a department must belong to that department

(BR2) An employee must not have a salary greater than that of the manager or the department to which he or she belongs.
(BR3) A department of the Rome branch must be managed by an employee with more than 10 years' employment with the company.
(BR4) An employee who does not belong to a particular department must not participate in any project.

	Derivations

	(BR5) The budget for a project Is obtained by multiply ing the sum of the salaries of the employees who are working on it by 3.

Figure 5.24 Business rules of the schema in Figure 5.19.

5.4 Bibliography

There are many texts on information system development and. more in general, on software engineering, among which we mention Davis [351, Fairly [39], Senn [74] and Pressman [68]. The organization of the database design process in four phases (conceptual, logical, and physical design. preceded by requirement analysis) was proposed by Lum et al [57] as the result of a workshop held in 1978. A detailed treatment of conceptual and logical design is offered by Batini, Ccri and Navathe [7]. Additional readings on database design include Mannila and Raiha [59], Teorey and Fry [85], Teorey [84], and Wiederhold [92]. Most of these books also include a detailed description of a version of the Entity-Relationship model. The E-R model is usually attributed to Chen [23], who presented a simplified version compared to that presented in this chapter, systematizing concepts already discussed in the literature. Many extensions were later proposed, the most important of which are included in our treatment. The generalization construct was introduced by Smith and Smith [82]. Tsichritzis and Lochovski [87] and Hull and King [48] present and compare several data modelling features.

Business rules have been discussed in depth by Fleming and von Halle [41]

5.5 Exercises

Exercise 5.1 Consider the E-R schema in Figure 5.25 the schema represents various properties of men and women.

4. Correct the schema, taking into account the fundamental properties of the generalizations.

5. The schema represents only the female workers; modify the schema to represent all the workers, men and women.

6. Among the properties of cities, the State attribute can be seen also as an subproperty of the attribute County. Restructure the schema in this sense.
Exercise 5.2 Add the minimum and maximum cardinalities and the identifiers to the schema produced in Exercise 5.1. State whether there are integrity constraints on the schema that cannot be expressed by the Entity-Relationship model.

Exercise 5.3 Represent the following, using the constructs of the Entity-Relationship model.

7. In a zoological garden there are animals belonging to a species and having a certain age; each species is situated in a sector (having a name) of the zoo.

8. An automobile rental firm has a vehicle pool, in which each automobile has a registration number and a colour and belongs to one category; for each category, there is a rental tariff.

9. A company produces CDs with a code and a title; each CD has been recorded by one or more singers, each of whom has a name and an address and some of whom have a stage name.
Exercise 5.4. Complete the schemas produced in the exercise above with further information based on reasonable assumptions about each one.

Exercise 5.5 Show the following concepts, using, where appropriate, the generalization construct of the Entity-Relationship model indicate, in each case, the attributes of the various entities and the type of generalization resolving the cases of overlapping.

10. The employees of a company are divided into managers, programmers, analysts, project leaders and secretaries. There are analysts who are also programmers. The project leader must be a manager. Each employee has a code, a name and a surname. Each category of employee has its own basic salary. Each employee, apart from the managers, has fixed working hours.

11. A French airline offers flights, each of which has a number that identifies the flight (for example Pans–Boston). a date (25 Mareh 2000), a departure time (8:00) and an arrival time (12:00), a departure airport and a destination airport. There are national and international flights. The international flights can have one or more stopovers. For completed flights, information to be recorded is the actual time of departure and arrival (for example with reference to the flight given above, 8:05 and 12:07). For future flights, the number of seats available must be known.

12. An automobile company produces cars, motorcycles, lorries and tractors. The vehicles are identified by a chassis number and have a name (for example Punto), a cylinder capacity and a colour. The cars are subdivided according to size: compact (up to 2.5m in length) and family (over 2.5m); and according to engine capacity: small (up to 1200cc), medium (from 1200 to 2000cc) and large (over 2000cc). The motorcycles are divided into mopeds (cylinder capacity below 125cc) and roadsters (above 125cc). The lorries have a weight and can be articulated.

Exercise 5.6 Consider the Entity-Relationship schema in Figure 5.26. Describe in words the information it represents.

Exercise 5.7 Translate into business rules the following properties of the data in the schema in Figure 5.26.

13. There can be no more than five players in a team who play in the same position.

14. A team earns 3 points if it wins. 1 if it draws, zero if it loses.

15. If a team plays a match at home, then it is the visiting team in the next match.

Produce the complete documentation for such a schema.

Exercise 5.8 Modify the Entity-Relationship schema in Figure 5.26 so as to describe also the past contracts between players and teams with the date of beginning and end of the contracts and the main position played by each player in each team. It is possible that a player can have different contracts with the same team in different periods. For current contracts we wish to know the date of commencement.

Exercise 5.9. In each of the following cases, reference is made to two or more entities defined in an Entity-Relationship schema and to a concept that involves them. Specify the schemas, denning the constructs (one or more relationships and, if necessary, further entities with the relative identifier) necessary to represent the concept, maintaining the entities indicated.

16. Entities: sport, country and surface. Concept: the fact lhat in one country a sport is practised on a certain surface (for example, tennis is played on grass in England and in Australia, on red shale in Italy and France, on Astroturf in the USA, Italy and France; soccer on grass in Italy, on grass and Astroturf in the USA, on grass in England).

17. Entities: scientist and department. Concept: the fact that the scientist has held seminars in the department. For every seminar, it is necessary to show the date, time and title, with the constraint that a scientist cannot hold more than one seminar in one day.

18. Entities: professional and company. Concept: the fact that the professional has been a consultant for the company. It is necessary to show the number of consulting sessions held by the professional for each company, with the total cost.

Exercise 5.10. Consider a ternary relationship involving the entities EMPLOYEE, PROJECT and CONSULTANT. Show in which of the following cases it is appropriate to substitute two or three binary relationships for such relationship. In the cases where it is possible, show how it is done,

19. Each employee is involved in zero or more projects and interacts with zero or more consultants. Each consultant is involved in zero or more projects and interacts with zero or more employees. Each project involves one or more employees and one or more consultants (who need not interact among themselves). An employee and a consultant collaborate in the field of a project if and only if they collaborate between themselves and are both involved in the project.

20. Each employee is involved in zero or more projects, in each of which they interact with one or more consultants (who can be different from project to project and who can in general be a subset of the consultants involved in the project). Each consultant is involved in zero or more projects in each of which he or she interacts with one or more employees (who can be different from project to project and who can in general be a subset of the employees involved in the projects). Each project involves one or more employee-consultant pairs.

21. Each employee is involved in zero or more projects. Each consultant is involved in zero or more projects. Each project involves one or more employees and one or more consultants. An employee and a consultant interact if and only if there is at least one project in which they are both involved.
Figure 5.� SEQ Figure_5. * ARABIC �1� Life cycle of an information system

Figure 5.3 The products of the various phases of the design of a relational database with the Entity-Relationship model

Figure 5.2 The phases of database design

Figure 5.5 Examples of entity of the E-R model

Figure 5.7 Examples of relationships in the E-R model.

Figure 5.6 Example of occurrences of the exam relationship

Figure 5.9 Example of a ternary relationship in the E-R model.

Figure 5.10 Example of occurrences of the SUPPLY relationship

Figure 5.12 An example of an entity with a composite attribute

Figure 5.11 E-R schemas with relationships, entities and attributes

Figure 5.13 An Entity-Relationship schema

Figure 5.14 Cardinality of a relationship in the E-R model.

Figure 5.15 Examples of cardinality of relationships

Figure 5.16 Example of entity attributes with cardinality

Figure 5.17 Examples of internal and external identifiers

Figure 5.18 Example of an external entity identifier

Figure 5.19 The schema shown in Figure 5.13 completed by identifiers and cardinality

Figure 5.20 Examples of generalization among entities

Figure 5.21 Hierarehy of generalizations between entities

Figure 5.22 Description of the E-R model using the E-R model

Figure 5.25 E-R schema for Exercise 5 1

Figure 5.26 Schema E-R for Exercise 5. 6

� The term instance is generally used rather than occurrence, but we have preferred to use occurrence here in order to avoid confusion with the concept of instance (set of tuples) used in the relational model.

� In the case of a binary relationship, the participation of the entity with maximum cardinality set to one can be seen as a function (partial if the minimum cardinality is equal to zero) that associates with an occurrence of the entity a single occurrence (or none) of the other entity involved in the relationship.

5.20

