
1

UML

2

Introduction

● UML = Unified Modeling Language
● It is a standardized visual modeling language.

– Primarily intended for modeling software systems.

– Also used for business modeling.

● UML evolved from earlier competing modeling
languages.
– Based on the best parts of those earlier methods.

– Has continued to evolve since its creation.

● UML is NOT a visual programming language.

3

Architectural Views of UML
(part 1 of 3) User and structural views

● UML is centered around a number of different
types of diagrams, each modeling the system
from a different perspective.
– Use case diagrams model the functionality of the

system from the users' perspective.

– Structural diagrams model the static structure of a
system.

● Class diagrams show the overall structure.
● Object diagrams show the structure at a particular time.

4

Architectural Views of UML
(part 2 of 3) Behavioral view

– Interaction diagrams model the interaction of objects
as they perform some operation.

● Sequence diagrams model the sequences of messages that
are sent between objects to carry out some operation.

● Collaboration diagrams show the roles objects play in
carrying out some operation.

– Behavoiral diagrams model the behavoir of objects.
● A state diagram models the states an object can be in and

the stimuli that cause it to change states.
● Activity diagrams show how the behaviors of objects

involved in some operation depend on each other.

5

Architectural Views of UML
(part 3 of 3) Implementation and environment views

– Physical diagrams show how the parts of a system are
organized in the real world.

● A component diagram shows the organization of the parts
of the system into packages.

● Deployment diagrams display the physical locations of the
components of the system.

6

Why Use UML?

● Communicate information about a system.
– Diagrams can be understood by non-programmers.

– Models can serve as a blueprint for a system.

– Models can help document a system.

● Even if the diagram itself is ultimately discarded,
the act of creating it is useful since it helps you to
understand whatever it is you're modeling.

7

Use Case Diagrams
(part 1 of 5) What are they and what are tye used for

● A use case diagram models the users' view of the
system.
– Describes what the system does, not how it does it.

– Shows how the user interacts with the system.

● Useful for:
– Determining features.

– Communicating with clients.

– Generating testcases.

8

Use Case Diagrams
(part 2 of 5) Basic parts

● Basic Vocabulary
– Actor: A person or thing involved in some task

– Use case: Something the user does with the system.

– Communication: Lines linking actors and use cases.

9

Use Case Diagrams
(part 3 of 5) Simple Example

● Use case diagram for a text editor:

10

Use Case Diagrams
(part 4 of 5) More parts

● More vocabulary:
– Include - Like a procedure call.

– Extend - Like a procedure that is called sometimes
depending on some condition.

– Generalizations - A specialization of some case.

– Boundary box - Group use cases together.

● Examples on next slide...

11

Use Case Diagrams
(part 5 of 5) More complex example

● Another use case diagram for a text editor:

12

Class Diagrams
(part 1 of 7) Class compartments

● A class diagram models the classes in a system
and how they are related.

● Classes are modeled as boxes with compartments
for:
– The class name.

– Attributes - the data
members of the class.

– Operations - the
methods of the class.

13

Class Diagrams
(part 2 of 7) Member Visibility

● Compartments (except the name) can be omitted
if not needed for the purpose of the diagram.

● Characters placed in front of class members
indicate visibility:
– + Public

– # Protected

– - Private

– ~ Package

14

Class Diagrams
(part 3 of 7) Details

● Other class modeling details:
– The order of the compartments is always the same:

class name, attributes, and operations.

– Members are listed in order of decreasing visibility,
from public down to private.

– Functions for getting and setting attributes are often
omitted from the diagram.

– Abstract classes are represented by having their class
name in italics.

– Pure virtual functions also have their names in italics.

15

Class Diagrams
(part 4 of 7) Associations and generalizations

● Many different relationships:
– Associations - Arrows indicate

the direction of the relation.
Class1 and Class2 know about
each other, and Class2 knows
about Class3, but Class3 is not
aware of anyone else.

– Generalization - Indicates
inheritance - the Parent is a
generalization of the Child1
and Child2.

16

Class Diagrams
(part 5 of 7) Compositions and aggregations

– Composition - A is composed of
Bs, like a building is composed of
rooms. Usually the lifetime of B is
strongly tied to the lifetime of A.

– Aggregation - Weaker form of
composition. C has a collection of
Ds, like a shopping list has a
collection of items.

– Don't worry too much about
getting the diamonds right - if in
doubt, don't include them.

17

Class Diagrams
(part 6 of 7) Multiplicity

● Multiplicity indicates the
number of instances that
can be on either end of a
relationship.
– 0..1 Zero or one instance

– 0..* Any number

– 1 Exactly one instance

– 1..* At least one

– n..m General form

18

Class Diagrams
(part 7 of 7) Example

● Class diagram for a text editor:

19

Object Diagrams
(part 1 of 2)

● An object diagram shows instances of classes and
their relationships at a particular point in time.

● Useful for explaining complex relationships.
● Consider this small class diagram:

20

Object Diagrams
(part 2 of 2) Example

● An object diagram could show how instances of
those classes are used to represent a house:

21

Sequence Diagrams
(part 1 of 5) Organization and use.

● A sequence diagram details how an operation is
carried out.
– Shows what messages are from one object to another

and when they are sent.

– Organized vertically by time - time flows down.

– Horizontal axis shows classes or class roles.

– Usually an individual diagram shows the sequence of
events for some particular feature rather than for the
whole program.

22

Sequence Diagrams
(part 2 of 5) Vocuabulary

● Diagram vocabulary:
– Class Identification - a box

with underlined name in form
of InstanceName : ClassName.

– Class Lifeline - a dotted line
indicating the object exists.

– Termination - An X at the end
of the lifeline indicating the
object was destroyed.

23

Sequence Diagrams
(part 3 of 5) More vocabulary

– Activation - A box over the
lifeline indicates that class or
object has control.

– Simple message - A line with
a line arrow indicates a
message or function call.

– Syncronous message -
Indicated by a line with a
filled arrow. A dashed line
with an arrow in opposite
direction indicates a return.

24

Sequence Diagrams
(part 4 of 5) Yet more vocabulary

– Asynchronous message -
A line with a half arrow
indicates a message that
does not stop processing
in the sender.

– Call to self - An object
calling itself is indicated
by a message and a sub-
activation box.

– Usually messages are
labeled.

25

Sequence Diagrams
(part 5 of 5) Example

● Sequence diagram for text editor spell checking:

26

Collaboration Diagrams
(part 1 of 2) Diagram vocabulary

● A collaboration diagram models the flow of
messages between objects.

● Vocabulary is similar to sequence diagrams.
– Classes are represented by boxes with names in the

form of instance/role name : class name. Instance
names are underlined.

– Message types are the same as in sequence diagrams.

– Messages have a sequence number.

– Time is indicated by sequence numbers rather than
the arrangement of the diagram.

27

Collaboration Diagrams
(part 2 of 2) Example

● Collaboration diagram for text
editor spell checking:

28

Statechart Diagrams

● A statechart diagram shows the states an object
can be in and the transitions between states.

29

Activity Diagrams
(part 1 of 2) Purpose and parts

● An activity diagram is like a flowchart.
● Shows the logic of some operation.

– States are actions.

– Can have multiple objects. The diagram is divided
into swimlanes, one lane for each object.

– Can have branches like a flowchart.
● Drawn as diamonds
● Need guard expressions to label the transitions out.

– Can have forks and joins.

30

Activity Diagrams
(part 2 of 2) Example

● Activity diagram
for a vending
machine:

31

Component and
Deployment Diagrams

(part 1 of 2)
● A component diagram shows the relationships

between the major parts of a system.

32

Component and
Deployment Diagrams

(part 2 of 2)
● A deployment diagram shows where the

components of a system are physically located.
● In addition to the vocabulary from component

diagrams, a deployment diagram uses nodes and
communication relationships:

